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Figure 1: Mesh2Tex learns realistic object texturing on a shape geometry through a hybrid mesh-field texture representation
supporting high-resolution texture generation on various shape meshes. Furthermore, our learned texture manifold supports
texture transfer optimization from image queries without requiring any matching geometry or pose alignment to the image,
producing perceptually consistent texturing in this challenging content creation scenario.

Abstract

Remarkable advances have been achieved recently in
learning neural representations that characterize object ge-
ometry, while generating textured objects suitable for down-
stream applications and 3D rendering remains at an early
stage. In particular, reconstructing textured geometry from
images of real objects is a significant challenge – recon-
structed geometry is often inexact, making realistic texturing
a significant challenge. We present Mesh2Tex, which learns
a realistic object texture manifold from uncorrelated collec-
tions of 3D object geometry and photorealistic RGB images,
by leveraging a hybrid mesh-neural-field texture representa-
tion. Our texture representation enables compact encoding

of high-resolution textures as a neural field in the barycen-
tric coordinate system of the mesh faces. The learned texture
manifold enables effective navigation to generate an object
texture for a given 3D object geometry that matches to an
input RGB image, which maintains robustness even under
challenging real-world scenarios where the mesh geometry
approximates an inexact match to the underlying geome-
try in the RGB image. Mesh2Tex can effectively generate
realistic object textures for an object mesh to match real im-
ages observations towards digitization of real environments,
significantly improving over previous state of the art.

Project page: alexeybokhovkin.github.io/
mesh2tex/
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1. Introduction
The ability to obtain 3D representations of real-world

objects lies at the core of many important applications in
graphics, robotics, movies and video games, and mixed
reality. Approaches tackling the tasks of 3D genera-
tion [31, 24, 19, 27, 28, 9] or single-view reconstruction
[5, 25, 45, 23, 6] enable users to easily create digital 3D
assets, either from scratch or conditioned on an image.
However, these approaches primarily focus on generat-
ing/inferring the geometry of objects, and this alone is in-
sufficient to capture realistic environments, which requires
high-quality texturing.

In this work, we propose Mesh2Tex tackle the comple-
mentary task of high-fidelity texture generation given known
object geometry. In addition to allowing texturing generation
for a given object mesh, Mesh2Tex also enables image-based
texture synthesis – synthesizing textures that perceptually
match a single RGB image observation. In contrast to exist-
ing appearance modeling works that characterize texture as
a field over the volume of 3D space [3, 37, 38, 29], we ob-
serve that object textures lie on object surfaces, and instead
generate textures only on the mesh surface, with a hybrid
explicit-implicit texture representation that ties the texture
field to the barycentric coordinates of the mesh faces. This
produces textured meshes directly compatible with down-
stream applications and 3D rendering engines.

As large quantities of high-quality textured 3D objects are
very expensive to obtain, requiring countless hours of skilled
artists’ work, we train our texture generator with uncorre-
lated collections of 3D object geometry and photorealistic
2D images, leveraging differentiable rendering to optimize
mesh textures at arbitrary resolutions to match the quality of
real 2D images in an adversarial fashion. That is, we gen-
erate coarse features and colors for each mesh face, which
are then refined to high-resolution textures through a neural
field defined on the barycentric coordinates of each mesh
face. This hybrid texture representation enables differen-
tiable rendering for texturing on explicit mesh surfaces while
exploiting the efficiency of neural field representations.

Our learned texture generator can then be used to produce
realistic textures to match an input RGB observation of an
object, by optimizing over our learned texture manifold con-
ditioned on the mesh geometry, to find a latent texturing that
perceptually matches the RGB image. As state-of-the-art
object geometry reconstructions are typically inexact (e.g.,
noise, oversmoothing, retrieval from a database), our learned
texture manifold enables effective regularization over plausi-
ble textures which effectively capture the perceptual input
while providing realistic texturing over the full object. We
formulate a patch-based style loss to capture perceptual sim-
ilarities between our optimized texture and the RGB image,
guided by dense correspondence prediction to correlate them.
Experiments demonstrate that we outperform state of the art

in both unconditional texture generation as well as image-
conditioned texture generation.

In summary, our contributions are:

• a new hybrid mesh-neural-field texture representation
that enables diverse, realistic texture generation on ob-
ject mesh geometry by tying a neural texture field to
the barycentric coordinate system of the mesh faces.
This enables learning a rich texture manifold from col-
lections of uncorrelated real images and object meshes
through adversarial differentiable rendering.

• our learned texture manifold enables effective inference-
time optimization to texture an object mesh to perceptu-
ally match a single real-world RGB image; crucially, we
maintain robustness to real-world scenarios of differing
views and even geometry with a patch-based perceptual
optimization guided by dense correspondences.

2. Related Work
Optimization-based Texturing. Various approaches have
been proposed to texture 3D shapes by optimizing from
aligned image views of the shape. The traditional optimiza-
tion approach of Zhou et. al. [49] solves a global optimiza-
tion for a mapping from observed RGB images onto re-
constructed geometry. More recently, Huang et. al. [15]
introduce a modern adversarial discriminator loss, coupled
with differentiable rendering, to optimize for texture on re-
constructed geometry to produce realistic texturing robust
to camera pose misalignments in real-world RGB-D capture
scenarios. While these methods can produce impressive tex-
turing results, they require aligned 2D/3D data and cannot
produce textures in unobserved regions.

Learned Texture Completion and Generation. Learning-
based methods have also explored generative texturing, aim-
ing to learn generalized features for unconditional synthesis
or conditional inpainting. Photoshape [32] proposes to learn
material retrieval to apply materials to 3D shapes. Recently,
several methods have been developed to generate textures on
various representations: SPSG [8] produces per-voxel col-
ors with an adversarial differentiable rendering formulation,
Pavollo et. al. [33] learn texturing in the UV domain, and
Henderson et. al. [13] and Texturify [40] propose to gen-
erate per-face mesh colors with variational and adversarial
training, respectively. The recent success of neural implicit
field representations has also inspired implicit texture field
models [30, 3, 10]. Our approach aims to model texture
on the surface of a mesh, coupled with the representation
capacity of a shared implicit field per mesh face.

Query-based 3D Understanding. The recent success of
vision-language models such as CLIP [34] has sparked inter-
est in query-guided 3D understanding from text and images.

2



Figure 2: Method overview. Left: we first learn a texture generator for textures represented as a shared local neural field in the
barycentric coordinate system of each mesh face. This enables the capture of high-resolution texture detail, while remaining
tied to surface geometry, avoiding ambiguities of volumetric field representations. Our learned texture manifold can then be
used for texture transfer from a single RGB query image, based on a correspondence-guided patch-based style loss to produce
perceptually consistent texturing even for shapes with differing geometry and unknown image pose.

Text and image guidance have been exploited for knowledge
distillation for 3D semantic understanding [22, 36, 18]. Var-
ious shape generation tasks have also been formulated with
text queries, by leveraging CLIP as supervision [39, 17, 43].
In particular, Text2Mesh [26] leverages CLIP guidance for
text-based texture optimization on 3D shapes. We formu-
late Mesh2Tex to support image-based queries for texture
transfer optimization to various 3D shapes, to reflect poten-
tial practical texturing scenarios where images are largely
easy to capture or find, with high visual specificity. We thus
tackle challenges in geometric and pose misalignments from
various potential image queries.

3. Method

3.1. Overview

We aim to learn a high-quality texture manifold condi-
tioned on a given shape mesh geometry, which supports un-
conditional texture generation as well as optimization within
the texture manifold to fit to image queries for practical tex-
turing scenarios. An overview of our approach is visualized
in Figure 2. We propose to learn this texture manifold on a
hybrid representation that combines a mesh representation
with a neural field operating on the barycentric coordinates of
each mesh face. Our texture generator then generates initial
coarse features per-face for a given shape mesh, which are
then refined by a shared neural field across the mesh faces.
This enables high-resolution texture generation by sampling
the neural field on the mesh surface. In the absence of a
large-scale dataset of high-quality 3D textured shapes, we
supervise the texture generation with an adversarial loss with
photorealistic 2D images, through differentiable rendering.

We can then traverse our learned texture manifold to gen-
erate textures for a given shape geometry to perceptually
match to image queries. Since an RGB image query may
be taken at an arbitrary camera pose, we estimate the object

pose in the RGB image along with its normalized object
coordinates [44] to guide the texture optimization. Further-
more, we must also support texture transfer scenarios, as
having an exact geometric shape match for an arbitrary RGB
image query cannot be assumed in practice. We thus employ
both a global and local patch-based style loss to generate a
realistic texture that perceptually matches the query image.

3.2. Mesh-Field Texture Generation

We learn a texture manifold on a mesh-field represen-
tation. Given a shape mesh M, we use a latent-variable
conditioned encoder-decoder to obtain per-face features F .
We then employ a shared neural field ψ that operates on
each face to produce arbitrary-resolution texturing. High-
quality texture generation is then learned by supervision with
photorealistic 2D images in an adversarial fashion through
differentiable rendering. Our texture generator training is
shown in Figure 3.

A shape mesh M is represented as a quadrilateral mesh;
inspired by the hierarchical mesh representation of Textu-
rify [40], we also employ QuadriFlow [16] to parameterize
shape meshes as hierarchies of 4-way rotationally symmetric
(4-RoSy) fields. We can then leverage convolutional and
pooling operators on the neighborhoods of each quad face,
enabling encoding and decoding features on such mesh faces
with arbitrary topologies. We employ an encoder-decoder
face convolutional network G on M, which takes as input
geometric quad face features (per-face normals, fundamen-
tal forms, and curvature), and predicts per-face features Fc.
Similar to StyleGAN [20] we incorporate a latent texture
code z into the decoder through a mapping network.

As we aim to generate high-quality textures not limited
to the mesh face resolution, we leverage a neural field ψ.
ψ takes as input a barycentric coordinate p on a mesh face,
along with mean face feature Fv of all incident quad faces:

ψ(p, b1Fv1 + b2Fv2 + b3Fv3) = c ∈ R3
[−1,1], (1)
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Figure 3: Mesh-field texture generation. We employ face
convolutions following [40] for initial coarse feature gener-
ation, followed by a neural field that interprets the per-face
features to produce refined color outputs at arbitrary loca-
tions on the mesh surface. The hybrid mesh-field texture
generation is supervised in an adversarial fashion through
differentiable rendering, with photorealistic 2D images rep-
resenting the real distribution.

where A = {v1, v2, v3} is the triangle half of a quad face
{v1, v2, v4, v3} in which p lies, {b1, b2, b3} are the barycen-
tric coordinates of p with respect to triangle A, and c is the
final output color. We can then generate arbitrary-resolution
textures by densely sampling ψ on each mesh face.

To supervise the learning of this mesh-field texture mani-
fold, we differentiably render our generated textures for an
adversarial loss with photorealistic 2D images. To render
the generated textures, we sample ψ at the locations corre-
sponding to each pixel in the rendered view. In addition
to implicit field ψ rendering, we also pass the output fea-
ture map Fc into one convolutional layer and render it using
PyTorch3D [35] differentiable renderer and supervise it sim-
ilarly as a proxy loss. We then train the texture manifold in
an end-to-end fashion using a non-saturating GAN loss with
gradient penalty and path length regularization.

3.3. Texture Transfer from a Single Image

Once learned, we can not only use our texture manifold
for unconditional generation, but also importantly traverse
through the manifold to produce shape texturing that matches
to a query RGB image I . This represents real-world textur-
ing scenarios where a user may wish to texture a shape
based on an easy-to-capture image inspiration. Here, notable
challenges are lack of knowledge of the ground truth object
pose in I , and handling inexact geometric matches between
the shape mesh to be textured and the object in I – as it is
not practical, nor always desirable, to assume the ability to
reconstruct or retrieve the exact geometry of the object in
an arbitrary image. We thus aim to produce textures on a
shape to perceptually match an image I in these challenging
scenarios. Our texture transfer optimization is illustrated in
Figure 4.

From I , we first estimate the object pose as the azimuth
and elevation angles, αa andαe, respectively. To this end, we
use a ResNet-18 [12] network on I , pre-trained on synthetic

Figure 4: Texture transfer optimization from a single image.
We traverse our learned texture manifold for texture transfer
from a single RGB image query. Since image alignment
may be unknown, we estimate a coarse pose along with
finer-grained dense NOC correspondences. We leverage the
NOCs to guide patch sampling for our patch-based style
loss to produce texturing that perceptually matches to the
query images, without requiring any exact geometric shape
matches to the image.

rendered shapes to classify αa and αe into 12 and 5 bins
for a coarse rotation estimate. For finer-grained reasoning,
we predict normalized object coordinates [44] INOC, dense
correspondences from the object pixels in I to the canonical
space of the object. For NOC prediction, we use a UNet-
style network with an EfficientNet-b4 [42] backbone, trained
on synthetic rendered shape data.

We then formulate our texture transfer optimization. We
differentiably render our generated texture from initial pose
estimate αa and αe to produce generated image X . Since
we optimize for perceptual similarity, we employ a style
loss [11] in a global and local fashion to compare X and I .

We then optimize for latent texture code z with the loss:

L = wglob

Nh∑
h=1

Nl∑
l=1

Lglob(I
h,l, Xh,l)

+ wpatch

Np∑
p=1

Nh∑
h=1

Nl∑
l=1

Lpatch(I
h,l
p (x, y), Xh,l

p (x′, y′)),

(2)

where Lglob denotes a global style loss, Lpatch a local patch-
based style loss, and wglob and wpatch constants to balance
the loss values.

Global style loss. Lglob considers the full images I and
X at Nh = 3 resolution levels (original, half, and quarter
resolution): Ih and Xh, h ∈ [1, 2, 3]. The global style loss
is then computed on each pair (Xh, Ih) on Nl = 5 VGG
feature layers.

Patch style losses. Since the precise structure of the object
in I may not match with that of X (e.g. geometry mismatch
or inconsistent pose prediction), we further employ local
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style losses on image patches. We extract Np = 2 patches
Ip(x, y) from I randomly per iteration, located at patch cen-
ters (x, y) within the object. We then use the corresponding
NOC estimate at the patch location, INOC(x, y), and find a
corresponding patch Xp(x

′, y′) where (x′, y′) is the pixel
location whose shape NOC is closest to INOC(x, y) w.r.t. ℓ2
distance. Note that since X has been rendered from a shape
mesh, we can use ground truth shape NOCs for X , and only
require predicted NOCs for I . This provides a coarse corre-
spondence between patches to guide the style loss. Similar
to Lglob, we apply Lpatch at Nh = 3 resolution levels and
with Nl = 5 VGG feature layers.

Face feature refinement. With texture code z optimized
from Equation 2, we further allow for texture refinement
by unfreezing the last two face convolutional layers in the
texture generator. We optimize for refined weights in the
surface features using only Lpatch, which enables better
capturing of local detail in I .

Implementation Details Our Mesh2Tex model is imple-
mented using PyTorch and trained using an Adam [21] opti-
mizer with learning rates of 1e-4, 12e-4, 1e-4, 14e-4 for the
encoder, generator, neural field ψ parameters and both dis-
criminators, respectively. Mesh2Tex is trained on 2 NVIDIA
A6000s for 50k iterations (∼ 100 hours) until convergence.

At test-time, we optimize latent codes for 100 iterations
and refined weights for additional 300 iterations, which takes
∼ 400s in total. During texture optimization, we extract 64 ×
64 patches. We provide further details in the supplemental.

4. Results

We evaluate the texture generation capabilities of
Mesh2Tex on unconditional generation and image-based
texture generation, on both synthetic and real data. For both
scenarios, our texture generation is trained from real images.

Datasets. For evaluation, we use object geometry from
ShapeNet [4] for texturing, and real-world query images
from ScanNet [7] for chairs, and from CompCars [46] for
cars. For synthetic experiments requiring exact geometric
matches, we use ShapeNet textured objects and render query
image views. For real image queries with close matching ge-
ometry, we use Scan2CAD [1] annotations for chair meshes
to ScanNet images. For CompCars, we use the coarse pose
information (front, back, left, right, etc.) to estimate close
image alignments.

Note that all methods, except GET3D, were trained with
the same set of ShapeNet meshes, and images from Photo-
Shape [32] and CompCars [46] for chairs and cars. GET3D
requires a much denser sampling of images per shape rather

Figure 5: Unconditional texturing for meshes from
ShapeNet [4], in comparison with state of the art. Our ap-
proach generates more realistic, detailed textures.

than a single view per shape, so we instead compare with
the authors’ released pre-trained GET3D model.

Evaluation metrics. We evaluate the perceptual quality
of our generated textures with several metrics. To measure
the realistic quality of the textures, we compare rendered
views of generated textures on various shapes to real-world
images, using the standard FID [14] and KID [2] scores
used for assessing generated image quality. For FID and
KID evaluation, we use real images from PhotoShape [32]
and CompCars [46] for chairs and cars, respectively, and 6
rendered views from each synthesized textured shape. Addi-
tionally, for texture transfer from a single image, we compute
CLIP [34] similarity as cosine distances between the query
image and rendered texture. In synthetic experiment setups
where exact geometric matches are available, we further com-
pute an LPIPS [48] perceptual metric between synthesized
views and the query image.

Baselines. We compare with several state-of-the-art textur-
ing methods leveraging various texture representations: Yu
et. al. [47] learns texture generation on a UV map parame-
terization, EG3D [3] leverages an efficient triplane represen-
tation for view synthesis, Texturify [40] generates per-face
colors on a mesh, and GET3D [10] jointly estimates color
and geometry with triplane representations.

4.1. Unconditional Texture Generation

Table 1 and Figure 5 show quantitative and qualitative
comparisons of unconditional texture generation to state of
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Method Parameterization Chairs Cars
FID KID FID KID

EG3D Tri-plane Implicit 36.45 2.15 83.11 5.95
Yu et al. UV 38.98 2.46 73.63 5.77
GET3D Tri-plane Implicit 46.20 3.02 89.62 6.92
Texturify 4-RoSy Field 31.08 1.75 59.55 4.97
Ours 4-RoSy Implicit Field 30.01 1.69 41.35 3.41

Table 1: Unconditional texture generation for 3D shapes.
Our mesh-field approach outperforms state of the art in gen-
eration quality. The KID values are scaled by 102.

the art. Our hybrid mesh-field texture representation enables
richer texture generation with finer-scale details than state-
of-the-art baselines.

4.2. Texture Transfer from a Single Image

We further evaluate texturing of objects from image
queries, which opens up new possibilities in the content
creation process. We consider both synthetic image queries,
which enable texturing of exact geometric matches, as well
as real image queries, where no object geometry matches
exactly to the queries. For all baselines, we apply a similar
texture optimization as our approach, leveraging global and
patch-style losses without NOC guidance.

4.2.1 Synthetic Image Query Experiments

Exact geometry and known image alignment. We evalu-
ate texture generation from a single image query to exactly
matching object geometry with known image alignment in
Tables 2 and 3, which measure the distribution quality and
perceptual match to the query image, respectively. The opti-
mization through our high-fidelity texture manifold enables
more detailed texturing to match to various texture changes
in the query image, in comparison to baselines.

Exact geometry and unknown image alignment. We
evaluate texture generation from a single image query where
the pose of the shape in the input query is unknown. Quan-
titative evaluation with state of the art is shown in Tables 4
and 5, which measure the distribution quality and perceptual
match to the query image, respectively. Figure 6 visualizes
qualitative comparisons. For GET3D, we do not evaluate
LPIPS, as it can produce geometric changes resulting in an
inexact geometry match to the query.

Even with exact geometry, the unknown image alignment
poses a notable challenge, resulting in degraded performance
in the baselines. Our approach maintains more robustness
due to the NOC guidance in our patch loss during texture
optimization, producing more plausible texture generation.

Texture transfer. We evaluate texture transfer experiments
from a single image query to an arbitrary shape of a different
geometry than the input query. Tables 6 and 7 compare our

Figure 6: Texture transfer from synthetic image queries
to exact shape geometry with unknown image alignment.
Mesh2Tex produces more geometrically consistent texturing
with finer-resolution details captured in our mesh-field tex-
ture representation. Note that GET3D models both geometry
and color, resulting in possible geometric changes.

approach to state of the art. This challenging scenario of
differing geometry results in a performance drop in all meth-
ods; however, due to our NOC-guided style optimization on
a mesh-field texture representation, Mesh2Tex can produce
textures on novel shape geometry with greater coherency
and finer details than baselines.

4.2.2 Real Image Query Experiments

Closely-matching geometry and image alignment. We
evaluate texturing from a single real-world image, where
the shape geometry to be textured and image alignment are
close (as we cannot guarantee an exact match to real-world
images). We compare with state of the art in Tables 2 and
3. In the real-world setting, view-dependent effects in real
images (e.g., specular highlights, reflections) pose a notable
challenge in evaluating texture optimization. With close
but inexact geometry and alignment, our method can still
produce textures that are consistent with the image queries
due to NOC-guided optimization, while baseline methods
struggle to transfer textures from incomplete and cluttered
real-world objects.

Closely-matching geometry and unknown image align-
ment. We further consider texturing from a single real-
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Figure 7: Texture transfer from real images (ScanNet) to
closely matching shape geometry (ShapeNet). Despite in-
exact geometry and pose, Mesh2Tex produces perceptually
consistent texturing.

world image to close shape geometry with unknown image
alignment. We show qualitative results in Figure 7 and
quantitative evaluation in Tables 4 and 5. Our NOC-guided
optimization through our texture manifold generates more
perceptually representative textures.

Texture transfer. Finally, we evaluate the challenging tex-
ture transfer scenario from a single real-world image from
ScanNet [7] to an arbitrary ShapeNet [4] mesh of the same
class category. This reflects potential texturing applications
from users who wish to use an inspirational image to gen-
erate texturing on a given shape. We show a quantitative
comparison in Tables 6 and 7, and qualitative results in
Figure 8. Our mesh-field texture representation maintains
more detail with NOC-guided patch loss to provide more
robustness during optimization.

4.3. Ablations

What is the impact of our mesh-field representation for
texture generation? Texturify [40] represents a per-face
mesh color generation approach, while we introduce a shared
barycentric neural field to capture high-fidelity details. Fig-
ure 5 shows our much finer-level detail generation, particu-
larly for complex textures on cars.
What is the impact of patch style loss in the texture op-
timization process? Table 8 shows that our patch-based

Figure 8: Texture transfer from real images (ScanNet, Comp-
Cars) to arbitrary shape geometry of the same class category
(ShapeNet). Under this challenging scenario, our NOC-
guided patch optimization enables plausible texturing for
image queries.

Method Chairs Cars Chairs
ShapeNet ShapeNet ScanNet

Exact geometry Close geometry
FID KID FID KID FID KID

EG3D 146.6 9.49 297.9 20.82 318.8 27.39
Yu et al. 153.1 10.2 289.4 18.88 329.8 28.60
GET3D 265.6 26.67 248.8 15.57 336.5 38.74
Texturify 155.9 10.94 301.4 20.63 342.2 33.65
Ours 115.4 5.38 165.5 6.84 309.7 26.50

Table 2: Evaluation on aligned queried texture generation
with image queries from rendered ShapeNet chairs and cars,
as well as real-world images from ScanNet chairs. Mesh2Tex
generates more realistic textures from single-image queries.
The KID values are scaled by 102.

style loss significantly improves texture transfer optimiza-
tion performance, allowing for capture of more local detail
and robustness to mismatches to the query image.
What is the impact of NOC guidance for the patch style
loss? In Table 8, we see that the NOC guidance helps to
improve the perceptual quality of results by establishing
coarse correspondence to the query image.
What is the effect or surface feature optimization? Fol-
lowing latent texture code optimization, we allow for surface
features in the texture generator to further be optimized,
which produces slightly improved local texture detail, as
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Method Chairs Cars Chairs
ShapeNet ShapeNet ScanNet

Exact geometry Close geometry
CLIP LPIPS CLIP LPIPS CLIP

EG3D 89.87 16.41 83.27 15.69 82.86
Yu et al. 89.73 16.26 84.33 14.83 82.93
GET3D 85.00 - 81.38 - 78.52
Texturify 89.22 16.23 83.82 14.69 81.71
Ours 92.27 14.64 85.91 14.77 84.28

Table 3: Evaluation on aligned queried texture generation
with image queries from rendered ShapeNet chairs and cars,
as well as real-world images from ScanNet chairs. Our
texture transfer optimization produces more perceptually
representative texturing results.

Method Chairs Cars Chairs
ShapeNet ShapeNet ScanNet

Exact geometry Close geometry
FID KID FID KID FID KID

EG3D 155.2 9.13 326.8 24.48 319.4 27.18
Yu et al. 160.0 9.88 343.3 32.71 327.1 28.20
GET3D 271.9 26.54 254.4 16.63 337.3 38.76
Texturify 174.2 11.74 344.2 25.34 333.3 28.81
Ours 121.1 5.08 165.8 6.77 311.9 26.73

Table 4: Evaluation on unaligned queried texture genera-
tion with image queries from rendered ShapeNet chairs and
cars, as well as real images from ScanNet chairs. Mesh2Tex
maintains more realistic texture details than state of the art.
The KID values are scaled by 102.

Method Chairs Cars Chairs
ShapeNet ShapeNet ScanNet

Exact geometry Close geometry
CLIP LPIPS CLIP LPIPS CLIP

EG3D 89.51 16.83 81.93 16.14 83.40
Yu et al. 88.98 16.81 79.35 21.84 82.67
GET3D 84.66 - 81.54 - 79.02
Texturify 88.24 16.82 80.45 15.42 82.26
Ours 91.57 14.96 85.42 14.97 84.28

Table 5: Evaluation on unaligned queried texture genera-
tion to ShapeNet chairs and cars from rendered ShapeNet
objects as well as real-world image queries from ScanNet
chairs. Our NOC-guided patch style loss maintains more
robustness to the unknown image alignment.

shown in Table 8.
We refer to the supplemental for qualitative ablation analysis.

Limitations. Mesh2Tex offers a promising step towards
conditional mesh texturing from a single image, though vari-
ous limitations remain. For instance, our approach does not
explicitly model semantics, potentially leading to distortions
in texture in semantically meaningful areas (e.g., spokes of a
car wheel). Additionally, a more explicit characterization of
the texture distribution could enable probabilistic sampling

Method Chairs Cars Chairs Cars
ShapeNet ShapeNet ScanNet CompCars

FID KID FID KID FID KID FID KID
EG3D 297.4 28.53 343.6 26.57 355.2 33.31 352.3 39.15
Yu et al. 303.4 29.10 351.1 26.75 362.6 34.20 385.4 51.37
GET3D - - - - - - - -
Texturify 307.9 29.63 357.1 27.05 370.4 34.85 264.7 29.23
Ours 276.7 26.17 194.5 10.11 348.5 32.33 203.7 21.48

Table 6: Evaluation on texture transfer to ShapeNet chairs
and cars from rendered ShapeNet objects as well as real-
world image queries from ScanNet chairs and CompCars
cars. In this challenging scenario, our mesh-field representa-
tion retains more realistic detail in texture optimization. The
KID values are scaled by 102.

Method Chairs Cars Chairs Cars
ShapeNet ShapeNet ScanNet CompCars

CLIP CLIP CLIP CLIP
EG3D 81.62 80.72 81.54 68.18
Yu et al. 81.31 78.69 81.21 64.76
GET3D - - - -
Texturify 80.70 78.59 80.99 66.93
Ours 83.47 82.20 81.95 77.71

Table 7: Evaluation on texture transfer to ShapeNet chairs
and cars from rendered ShapeNet objects as well as real-
world image queries from ScanNet chairs and CompCars
cars. Our NOC-guided patch style loss enables better char-
acterization of the input query image for texturing.

Method Chairs (unaligned)
ShapeNet

FID KID CLIP
w/o NOC 124.3 5.53 91.09
w/o patches 143.5 6.91 89.68
w/o surf. features 127.1 5.80 90.70
Ours 121.1 5.08 91.57

Table 8: Ablation study on texture transfer optimization
design. Our NOC guidance, patch style loss, and surface fea-
ture optimization help to improve generated texture quality.
The KID values are scaled by 102.

when input queries may be occluded or incomplete.

5. Conclusion

We presented Mesh2Tex, which learns a texture mani-
fold based on a hybrid mesh-field representation to generate
realistic, high-quality textures on shape geometry from real-
world imagery. Mesh2Tex enables test-time optimization for
texture transfer from single image queries. Crucially, our
NOC-guided local and global style loss enables optimization
for perceptually matching textures on a 3D shape that does
not require exact geometric matches to RGB image queries.
We believe this opens up many new possibilities in texturing
for content creation, enabling easy-to-capture images to be
used as guidance for holistic shape texturing.
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In this supplemental material, we show additional texture
generation results in Section A, texture transfer from query
images in Section B, qualitative visualizations for ablations
in Section C, network architecture details in Section D, and
additional implementation details in Section E.

A. Additional Generation Results
In Fig. 9 we show additional qualitative evaluation on

unconditional texture generation for ShapeNet meshes. Not
all baselines are able to produce diverse high-quality tex-
tures after training on uncorrelated real-world datasets. As
GET3D cannot be successfully trained on sparse views, we
use the dense view per-object training provided by the au-
thors; however, this still produces different artifacts. Our
learned hybrid mesh-field representation enables Mesh2Tex
to generate more realistic textures.

B. Additional Results for Texture Transfer from
a Single RGB Image

In Figs. 10, 11, and 12, we present additional results
on for texture transfer from synthetic input images, using

aligned, unaligned query images and arbitrary shape geome-
try, respectively. Mesh2Tex effectively leverages our learned
texture manifold, preserving consistent textures while trans-
ferring to different geometries.

Figs. 13, 14, and 15 present additional results on texture
transfer from real-world images from ScanNet and Comp-
Cars images as queries. Mesh2Tex is able to perform consis-
tent texture generation from real-world queries even under
the challenging scenario of different geometry, pose, and
real-world view-dependent effects.

C. Qualitative Ablation Visualizations

According to Tab.8 in the main paper, we show qualitative
results on an ablation study performed in texture generation
from unaligned synthetic ShapeNet images. Optimizing
textures without patch loss component or NOC guidance
leads to messy textures with stripe artifacts and disordered
texture mapping. Optimizing only the latent codes (w/o
surface features) results in inaccurate texture generation with
lost details.

Figure 9: Additional results on unconditional texturing for meshes from ShapeNet [4], in comparison with state of the art. Our
approach generates more realistic, detailed textures.
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Figure 10: Optimized textures based on input query images (top row) using aligned query images from ShapeNet chairs and
cars.
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Figure 11: Optimized textures based on input query images (top row) using unaligned images query images from ShapeNet
chairs and cars.
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Figure 12: Texture transfer from input query images (top row) using unaligned images and arbitrary shape geometry of the
same class category (ShapeNet).

D. Network Architecture
An overview of the architectures of our surface encoder,

generator, and neural field Ψ is shown in Figs. 17 and 18.
Note that we follow the use of FaceResNet blocks, FaceConv
layers, and Synthesis Block from Texturify [40]. Our gener-
ator then produces both coarse per-face rgb values as well as
feature vector Fc input to Ψ. Our discriminator architecture
follows the discriminator of Texturify.

In order to produce locally refined texture with Ψ, we
operate locally on faces, considering their barycentric co-
ordinate system. We compute per-vertex features from
Fc by averaging incident face features. For a point p on
the mesh surface, its feature is computed as the barycen-
tric averaging of the vertex features F1, F2, F3, where
the barycentric weights b1, b2, b3 are areas of triangles
△ (F1, F2, p),△ (F2, F3, p),△ (F3, F1, p) respectively.
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Figure 13: Texture transfer from real-world input query images (top row, ScanNet) using aligned images and close shape
geometry (ShapeNet).
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Figure 14: Texture transfer from real-world input query images (top row, ScanNet) using unaligned images and similar shape
geometry (ShapeNet).
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Figure 15: Texture transfer from real-world input query images (top row, ScanNet, CompCars) using unaligned images and
arbitrary shape geometry from the same class category (ShapeNet).

Ψ also takes a learnable auxiliary latent vector of size
zaux = 512 as input, which is fixed for the entire model. We
observed that this auxiliary latent enhanced the consistency
of high-resolution textures. The auxiliary latent, along with
surface encoder and generator features, are then processed
with two linear layers (LeakyReLU activations) before being
concatenated and passed to an additional four linear layers.
This results in the final output color corresponding to surface
location p.

When optimizing for texture from an input image query,
we also use a pose predictor network and NOC predictor
network. Pose prediction uses a ResNet18 [12] backbone,
with the final features of size 512 passed to two linear layers
with output dimension 256. This refined feature is then
passed to a two-layer MLP with hidden size 128 to estimate
the angles αa and αe. The NOC predictor leverages the
EfficientNet-b4 [42] architecture as a backbone for the U-

shaped model. It takes an RGB image and the corresponding
binary mask of a foreground object as 4-channel input and
predicts NOCs a 3-channel image.

E. Implementation Details

We train Mesh2Tex using an Adam optimizer with learn-
ing rates of 1e-4, 12e-4, 1e-4, 14e-4 for the encoder, gen-
erator, Ψ, and both discriminators, respectively, for Photo-
Shape [32], and learning rates of 1e-4, 15e-4, 5e-4, 1e-4 for
CompCars [46]. For both models, we use a batch size of 2,
and render 8 views for each shape in the batch.

To optimize texturing for input query images, we optimize
latent codes for 100 iterations and refined weights with the
parameters of the two last generator synthesis blocks for addi-
tional 300 iterations using an Adam optimizer with a learning
rate of 1e-2. For the style loss, we use VGG19 [41] network,
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Figure 16: Qualitative ablation study on texture transfer from synthetic input query images (ShapeNet) using unaligned images;
visualized with the query image pose.

and extract features of the (2nd, 4th, 8th, 12th, 16th) convo-
lutional layers. We extract patches of size 64 from both
rendered and input images. Both full images and patches are
equipped with corresponding foreground masks to filter out
extracted VGG background features.

Pose prediction is trained using an Adam optimizer with a
learning rate of 3e-4 for chairs and 2e-5 for cars, with a batch
size of 128 on images of size 512x512. The NOC Predictor
is trained using an Adam optimizer with a learning rate of
3e-4 for chairs and 5e-5 for cars, with a batch size of 64 on
images of size 512x512. Both networks are first pretrained

on synthetic renders of ShapeNet objects and fine-tuned on
real-world ScanNet and CompCars datasets (except for NOC
Prediction for CompCars as NOC data is not available).
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Figure 17: Overview of Surface Encoder (orange) and Generator (green) architectures. The encoder takes as input normals and
curvatures of the finest resolution quadmesh, processes them in a hierarchical convolutional structure to extract geometric
features. The generator then considers a latent texture code, learned noise, and the geometric features to produce per-face
features for the neural field.

Figure 18: Our architecture for local face neural field Ψ. Features from the surface encoder and generator are fused by their
barycentric coordinates and passed with an auxiliary latent vector into an MLP to produce the final color of surface location p.
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