
Neural Part Priors: Learning to Optimize
Part-Based Object Completion in RGB-D Scans

Alexey Bokhovkin and Angela Dai

Technical University of Munich

Fig. 1: Our Neural Part Priors learn latent spaces of object part geometries,
which we can use to fit to partial, real-world RGB-D scans of a scene to under-
stand its complete object part decompositions. Objects are detected as bounding
boxes in the input scan, and for each detected object we estimate its semantic
part labels and map them into the latent part space. We can then optimize the
part representations to fit to the input scan; furthermore, rather than indepen-
dently optimizing each object, we optimize for consistency with similar objects
in the same scene, producing globally-consistent, complete part decompositions.

Abstract. 3D object recognition has seen significant advances in recent
years, showing impressive performance on real-world 3D scan bench-
marks, but lacking in object part reasoning, which is fundamental to
higher-level scene understanding such as inter-object similarities or ob-
ject functionality. Thus, we propose to leverage large-scale synthetic
datasets of 3D shapes annotated with part information to learn Neural
Part Priors (NPPs), optimizable spaces characterizing geometric part
priors. Crucially, we can optimize over the learned part priors in or-
der to fit to real-world scanned 3D scenes at test time, enabling robust
part decomposition of the real objects in these scenes that also esti-
mates the complete geometry of the object while fitting accurately to
the observed real geometry. Moreover, this enables global optimization
over geometrically similar detected objects in a scene, which often share
strong geometric commonalities, enabling scene-consistent part decom-
positions. Experiments on the ScanNet dataset demonstrate that NPPs
significantly outperforms state of the art in part decomposition and ob-
ject completion in real-world scenes.

2 A. Bokhovkin, A. Dai

Project page: alexeybokhovkin.github.io/neural-part-priors/

Keywords: 3D semantic scene understanding, part segmentation, 3D
reconstruction

1 Introduction

With the introduction of commodity RGB-D sensors (e.g., Microsoft Kinect, In-
tel RealSense, etc.), remarkable progress has been made in reconstruction and
tracking to construct 3D models of real-world environments [33,47,6,35,11]. This
has enabled construction of large-scale datasets of real-world 3D scanned en-
vironments [8,4], enabling significant advances in 3D semantic segmentation
[10,20,7] and 3D semantic instance segmentation [23,15,21]. Such 3D object
recognition is very promising, but recognition at the level of objects remains
limited for many higher-level scene understanding and in particular lacks the
finer-grained knowledge required for interacting with and manipulating objects
(e.g., a table surface can afford support for other objects, but not the table legs).

Simultaneously, significant work has been done towards part segmentation
on 3D shapes, where synthetic datasets are available with part annotations for
supervision [32]. Recently, Bokhovkin et al. [3] proposed to bridge two tasks to-
gether to predict part decompositions of objects in real-world 3D scenes, leverag-
ing part information from synthetic CAD models aligned to real-world scanned
scenes [1,5,8]. This made an important step towards part-based understanding
in 3D scenes, but remained limited on resolution due to a dense volumetric rep-
resentation, relied heavily on synthetic priors that did not match precisely to
real observations, and made independent predictions for each object without
considering common object similarities in scenes.

We thus propose to learn Neural Part Priors (NPPs), and learn geometric
part priors from synthetic data encoded into latent spaces that can be opti-
mized over at inference to fit precisely to objects in real-world scanned scenes.
Our NPPs leverage the representation power of neural implicit functions to learn
spaces for representing the geometry of the parts of each class category. A shape
can then be represented by a set of latent codes for each of its parts, where each
code decodes to predict the respective part segmentation and signed distance
field representation of the part geometry. Importantly, this enables joint opti-
mization over all parts of a shape by traversing through the part latent space to
find the set of parts that best explain a shape observation. As repeated objects
often appear in a scene under different partial observation patterns, resulting
in inconsistent predictions when made independently for each object, we fur-
ther optimize for part consistency between similar objects detected in a scene to
produce scene-consistent part decompositions.

To fit to real-world 3D scan data, we first perform object detection and esti-
mate the part types for each detected object. We can then optimize jointly over
the part codes for each shape to fit to the observed scan geometry; we lever-
age a predicted part segmentation of the detected object, and optimize jointly

alexeybokhovkin.github.io/neural-part-priors/

Neural Part Priors 3

across the parts of each shape such that each part matches the segmentation,
and their union fits to the object. This joint optimization across parts produces
a high-resolution part decomposition whose union represents the complete shape
while fitting precisely to the observed real geometry. Furthermore, this optimiza-
tion at inference time allows leveraging global scene information to inform our
optimized part decompositions; in particular, we consider objects of the same
predicted class with similar estimated geometry, and optimize them jointly, en-
abling more robust and scene-consistent part decompositions.

In summary, we present the following contributions:

– We propose to learn optimizable part priors for 3D shapes, encoding part
segmentation and part geometry into a latent space for the part types of each
class category.

– Our learned, optimizable part priors enable test-time optimization over the
latent spaces to fit to partial, cluttered object geometry in real-world scanned
scenes, resulting in robust and precise semantic part completion.

– We additionally propose a scene-consistent optimization, jointly optimizing
over similar objects to enabling globally-consistent part decompositions for
repeated object instances in a scene.

2 Related Works

3D Object Detection and Instance Segmentation. 3D semantic scene un-
derstanding has seen rapid progress in recent years, with large-scale 3D datasets
[8,4,16] and developments in 3D deep learning showing significant advances in
object-level understanding of 3D scenes. Various methods explore learning on
different 3D representations for 3D object detection and 3D instance segmen-
tation, including volumetric grids [23,44], point clouds [39,50,27,38,34], sparse
voxel representations [15,21], and multi-view hybrid approaches [23,38]. These
approaches have achieved impressive performance in detecting and segmenting
objects in real-world observations of 3D scenes, but do not consider lower-level
object part information that is requisite for many vision and robotics tasks,
particularly those involving object interaction and manipulation.

Recently, Bokhovkin et al. [3] proposed an approach to estimate part decom-
positions of objects in RGB-D scans, leveraging structural semantic part type
prediction in combination with a pre-computed set of geometric part priors. Due
to the use of dense volumetric part priors, the part reasoning is limited to coarse
resolutions, and often does not precisely match the input observed geometry. We
also address the task of semantic part prediction and completion for objects in
real-world 3D scans, but leverage a learned, structured latent space representing
neural part priors, enabling part reasoning at high resolutions which optimizing
to fit accurately to the observed scan geometry.

3D Scan Completion. As real-world 3D reconstructions are very often in-
complete due to the complexity of the scene geometry and occlusions, various

4 A. Bokhovkin, A. Dai

approaches have been developed to predict complete shape or scene geometry
from partial observations. Earlier works focused on voxel-based scan completion
for shapes [49,13], with more recent works tacking the challenge of generating
complete geometry from partial observations of large-scale scenes [43,12,9,14],
but without considering individual object instances. Several recent works pro-
pose to detect objects in an RGB-D scan and estimate the complete object ge-
ometries, leveraging voxel [24,3] or point [53,34] representations. Our approach
to predicting part decompositions of objects inherently provides object comple-
tion as the union of the predicted parts; in contrast to previous approaches that
estimate object completion in RGB-D scans, we propose to characterize object
parts as learned implicit priors, enabling test-time traversal of the latent space
to fit accurately to observed input scan geometry.

Part Segmentation of 3D Shapes. Part segmentation for 3D shapes has
been well-studied in shape analysis, typically focusing on understanding col-
lections of synthetic shapes. Various methods have been developed for unsu-
pervised part segmentation by finding a consistent segmentation across a set
of shapes [19,26,42,25,30]. Recent deep learning based approaches have lever-
aged datasets of shapes with part annotations to learn part segmentation on
new shapes [28,52,22]. In particular, approaches that learn part sequences and
hierarchies to capture part structures have shown effective part segmentation
for shapes [46,45,51,32,31,48]. These approaches target single-object scenarios,
whereas we construct a set of learned part priors that can be optimized to fit to
real-world, noisy, incomplete scan geometry.

Neural Implicit Representations of 3D Shapes. Recently, we have seen
significant advances in generative shape modeling with learned neural implicit
representations that can represent continuous implicit surface representations,
without ties to an explicit grid structure. Notably, DeepSDF [36] proposed an
MLP-based network that predicts the SDF value for a given 3D location in space,
conditioned on a latent shape code, which demonstrated effective modeling of
3D shapes while traversing the learned shape space. Such implicit representa-
tions have also been leveraged in hybrid approaches coupling explicit geometric
locations with local implicit descriptions of geometry for shapes [18,17] as well as
scenes [37], without semantic meaning to the local decompositions. We propose
to leverage the representation power of such learned continuous implicit surfaces
to characterize semantic object parts that can be jointly optimized together to
fit all parts of an object to a partial scan observation.

3 Method

3.1 Overview

We introduce Neural Part Priors (NPPs) to represent learned spaces of geometric
object part priors, that enable joint part segmentation and completion of objects
in real-world, incomplete RGB-D scans. From an input 3D scan S, we first

Neural Part Priors 5

Fig. 2: Method overview. From an input scan, we first detect 3D bounding boxes
for objects. For each object, we predict their semantic part structure as a set of
part labels and latent codes for each part. These latent codes map into the space
of neural part priors, along with a full shape code used to regularize the shape
structure. We then refine these codes at test time by optimizing to fit to the
observed input geometry along with inter-object consistency between similar
detected objects, producing effective part decompositions reflecting complete
objects with scene consistency.

detect objects O = {oi} in the scan characterized by their bounding boxes and
orientations, then for each object we predict its part decomposition into a part
class categories and their corresponding complete geometry. This enables holistic
reasoning about each object in the scene, and prediction of complete geometry in
unobserved regions in the scan. Since captured real-world scene geometry tends
to contain significant incompleteness or noise, we propose to model our geometric
part priors based on complete, clean synthetic object part data, represented
as a learned latent space over implicit part geometry functions. This enables
optimization at test time over the latent space of parts to fit to real geometry
observations, enabling part-based object completion while precisely representing
real object geometry. Furthermore, rather than only considering each object
independently, we observe that repeated objects often occur in scenes under
different partial observations, leading to inconsistent independent predictions;
we thus jointly optimize across similar objects in a scene to produce scene-
consistent part decompositions. An overview of our approach is shown in Fig. 2.

Our NPPs spaces characterize object part geometry as signed distance fields
(SDFs), trained on part annotations for shapes. For each detected object oi ∈ O
in an input scan, we predict its semantic parts as the set of part categories
that compose the object along with initial estimates of their corresponding la-
tent codes in the learned part space. We then optimize for refined object pose
alignment, and then for the part latent codes to fit to the observed geometry
of each oi. For objects of the same class category and with similar predicted
shape geometry by chamfer distance, we jointly constrain them together in this

6 A. Bokhovkin, A. Dai

optimization. This results in scene-consistent, high-fidelity characterizations of
both object part semantics and complete object geometry.

3.2 Object Detection

From input 3D scan S, we first detect objects in the scene, leveraging a state-of-
the-art 3D object detection backbone from MLCVNet [50]. MLCVNet interprets
S as a point cloud and proposes objects through voting [39] at multiple resolu-
tions, providing an output set of axis-aligned bounding boxes for each detected
object oi. We extract the truncated signed distance field Di for each oi at 4mm
resolution to use for test-time optimization. We then aim to characterize shape
properties for oi to be used for rotation estimation and test-time optimization,
and interpret Di as a 323 occupancy grid which is input to a 3D convolutional
object encoder to produce the object’s shape descriptor si ∈ R256.

Initial Rotation Estimation. From si, we use a 2-layer MLP to additionally
predict an initial rotation estimate of the object as riniti around the up (gravity)
vector of S. We note that the up vectors of an RGB-D scan can be reliably esti-
mated with IMU and/or floor estimation techniques [8]. The rotation estimation
is treated as a classification problem across nr = 12 bins of discretized angles
({0◦, 30◦, . . . , 330◦}), using a cross entropy loss. We use the estimated rotation
riniti to resample Di to approximate the canonical object orientation, from which
we use to optimize for the final rotation ri and the object part latent codes.

3.3 Learned Space of Neural Part Priors

We first learn a set of latent part spaces for each class category, where each
part space represents all part types for the particular object category. To this
end, we employ a function fp characterized as an MLP to predict the implicit
signed distance representation for each part geometry of the class category. In
addition to the latent part space, we additionally train a proxy shape function fs
as an MLP that learns full shape geometry as implicit signed distances, which
will serve as additional regularization during the part optimization. Both fp
and fs are trained in auto-decoder fashion following DeepSDF [36]. Then each
train shape part is embedded into a part latent space by optimizing for its code
zpk ∈ R256 such that fp conditioned on this code and the part type maps a point
x ∈ R3 in the canonical space to SDF value d of the part geometry:

fp : R3 × R256 × ZNc
2 → R, fp(x, z

p
k,1part) = d. (1)

where 1part ∈ ZNc
2 is a one-hot encoding of the part type for a maximum of

Nc parts. The shape space is trained analogously for each class category where
zsi ∈ R256 represents a shape latent code in the space:

fs : R3 × R256 → R, fp(x, z
s
i) = d. (2)

Neural Part Priors 7

We train these latent spaces of part and shape priors on the synthetic Part-
Net [32] dataset to characterize a space of complete parts and shapes. To learn
the latent spaces, we minimize the reconstruction error over all train shape parts,
while optimizing for latent codes {zpk} and weights of fp. We use an ℓ1 recon-
struction loss with ℓ2 regularization on the latent codes:

L =

Np∑
j=1

|fp(xj , z
p
k,1part)−Dgt(xj)|1 + ||zpk||

2
2 (3)

for Np points near the surface. We train fs analogously.

(a) Projection into part and shape spaces. (b) Joint optimization to fit to input scan.

Fig. 3: (a) Projection into the part and shape latent spaces along with part
segmentation from input scan geometry. (b) Optimization at test time to fit to
observed scan geometry while maintaining inter-part consistency within a shape
and inter-shape consistency for geometrically similar objects.

3.4 Optimizing for Part Decompositions in Real Scenes

Once we have learned our latent space of parts, we can traverse them at inference
time to find the part-based decomposition of an object that best fits to its real-
world observed geometry in a scene. In particular, since real-world observations
are typically incomplete, we can optimize for complete part decompositions based
on strong priors given by the trained latent spaces. This allows for effective
regularization by synthetic part characteristics (clean, complete) while fitting
precisely to real observed geometry.

To guide this optimization for a detected object box o characterized by its
shape feature s, we first predict its high-level decomposition into a set of semantic
part types {(ck,pk)}, where pk ∈ R256 is a part feature descriptor and ck the
part class label. Note that we discard the i object suffix here for simplicity. We
then use this semantic part information to initialize the part optimization.

To obtain the semantic part type predictions, we employ a message-passing
graph neural network that implicitly infers part relations to predict the set of
component part types. Similar to [31], from the shape feature s we use an MLP
to predict at most Nc = 10 parts. For each potential part k, we predict its

8 A. Bokhovkin, A. Dai

probability of existence, its part label ck, and its corresponding feature vector
pk, with additional proxy losses on part adjacency probabilities between each
potential pair of parts to learn structural part information. This produces the
semantic description of the set of parts for the object {(ck,pk)}, from the parts
predicted with part existence probability > 0.5.

Projection to the Latent Part Space. We then learn a projection mapping
from the part features {pk} to the learned latent part space based on synthetic
part priors, using a small MLP to predict {z̃pk}, as shown in Fig. 3(a). This
helps to provide a close initial estimate in the latent part space in order to
initialize optimization over these part codes to fit precisely to the observed object
geometry. We additionally project the shape code s analogously to the learned
latent shape space with a small shape projection MLP to predict {z̃s}, which we
use to help regularize the part code optimization to remain globally consistent
over the shape. Both of these projection MLPs are trained using MSE losses
against the optimized train codes of the latent spaces.

Part Segmentation Estimation. In addition to our projection initialization,

we estimate part segmentation {Dp}Nparts

p=1 for the input object TSDF D over the
full volume, representing part SDF geometry in the regions predicted as corre-
sponding to the part p, where part segmentation regions cover the entire shape,
including unobserved regions. This is used to guide part geometry predictions
when optimizing at test time to fit to real observed input geometry. For each
point x ∈ R3 which has distance < dtrunc = 0.16m from the input object TSDF
D, we classify it to one of the predicted parts {(ck,pk)} or background using a
small PointNet-based[40] network. This segmentation prediction takes as input
the corresponding shape feature s, the initial estimated rotation riniti , and the
3D coordinates of x, and is trained with a cross-entropy loss.

3.5 Joint Part Optimization

To obtain the final part decompositions, we traverse over the learned latent
part space to fit to the observed input scan geometry, as shown in Fig. 3(b)
From the initial estimated part codes {z̃pk} and shape code {z̃s}, their decoded
part SDFs should match to each of {Dp}Nparts

p=1 . Since the part and shape latent
spaces have been trained in the canonical shape space, we optimize for a refined
rotation prediction r from rinit using iterative closest points [2,41] between the
sampled points near D and the initial shape estimate from projection z̃s. We use
Ni sampled points near the observed input surface D (near being SDF values
< 0.025m) for rotation refinement, with N the number of points not predicted
as background during part segmentation.

While the predicted projected part and shape codes {z̃pk}, {z̃sk} can provide
a good initial estimate of the part decomposition of the complete shape, they
represent synthetic part and shape priors that often do not fit the observed real
input geometry. We thus optimize for part decompositions that best fit the input

Neural Part Priors 9

observations by minimizing the energy:

L =
∑
k

Lpart + Lshape + wconsLcons, (4)

where Lpart denotes the part reconstruction loss, Lshape a proxy shape recon-
struction loss, Lcons a regularization to encourage global part consistency within
the estimated shape, and wcons is a consistency weight.

Lpart is an ℓ1 loss on part reconstruction:

Lpart =

Nparts∑
p=1

∑
Np

wtrunc|fp(zpk)− Tr(D
p)|+ ||zpk||

2
2, (5)

where Np is the number of points classified to part p and wtrunc gives a fixed
greater weight for near-surface points (< dtrunc = 0.16m).

Lshape is a proxy ℓ1 loss on shape reconstruction:

Lshape =
∑
N

wtrunc|fs(zs)− Tr(D)|+ ||zs||22. (6)

Finally, Lcons encourages all parts to reconstruct a shape similar to the op-
timized shape:

Lcons =
∑
N

|fp(zpk)− fs(z
s)|, (7)

where fs(z
s) is frozen for Lcons. This allows for reconstructed parts to join to-

gether smoothly without boundary artifacts to holistically reconstruct a shape.
This produces a final optimized set of parts for each object in the scene, where

parts both fit precisely to observed input geometry and represent the complete
geometry of each part, even in unobserved regions. The final part geometries can
be extracted from the SDFs with Marching Cubes [29] to obtain a surface mesh
representation of the semantic part completion.

Scene-Consistent Optimization. While this formulation enables joint part
optimization within an object, we observe that multiple objects within a scene
often tend to correlate with each other. In particular, scenes often contain re-
peated instances of objects which are then observed from different views, thus
frequently resulting in inconsistent optimized part decompositions when consid-
ered as independent objects. Thus, we propose a scene-consistent optimization
between similar predicted objects, where objects in a scene are considered similar
if their predicted class category is the same and the chamfer distance between
their decoded shapes from z̃sk is < τs.

For a set of Nsim similar objects in a scene, we collect together their pre-
dicted part segmentations and observed input SDF geometry in the canonical
orientation based on Tr(D

p) to provide a holistic set of constraints across differ-
ent partial observations to produce {Di}Nsim

i=1 . The {Di}Nsim
i=1 are then aggregated

to form D′ by sampling a set of Navg points near the surfaces of {Di}Nsim
i=1 where

10 A. Bokhovkin, A. Dai

Chamfer Distance – Accuracy (↓) Chamfer Distance – Completion (↓)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

SG-NN[9] + MLCVNet[50] + PointGroup[27] 0.047 0.110 0.146 0.173 0.350 0.051 0.146 0.083 0.054 0.141 0.123 0.192 0.382 0.045 0.156 0.089
MLCVNet[50] + StructureNet[31] 0.024 0.074 0.104 0.166 0.424 0.039 0.138 0.061 0.028 0.129 0.118 0.154 0.352 0.037 0.136 0.067
Bokhovkin et al.[3] 0.029 0.073 0.099 0.168 0.244 0.036 0.108 0.056 0.031 0.095 0.108 0.151 0.236 0.038 0.110 0.059

Ours 0.014 0.054 0.096 0.141 0.199 0.031 0.089 0.041 0.018 0.076 0.110 0.155 0.195 0.029 0.097 0.046

Table 1: Evaluation of semantic part completion on Scan2CAD [1] in comparison
to state-of-the-art part segmentation [27,31] and semantic part completion [3].
Our optimizable part priors produce more accurate part decompositions.

Navg is the average number of points across the Nsim objects, and each point is
assigned the minimum SDF value within its 30-point local neighborhood (to help
ensure that objects do not grow thicker in size from small-scale misalignments).
Based on D′, we then optimize for the part decompositions following Eq. 4.

3.6 Implementation Details

We first train our latent part and shape spaces on per-category on the synthetic
PartNet [32] dataset. We then train the projection mapping into the learned part
and shape spaces as well as the part segmentation. This is first pre-trained on
synthetic PartNet data using virtually scanned incomplete inputs to take advan-
tage of the large amount of synthetic data. To apply to real-world observations,
we then fine-tune the projections and part segmentation on ScanNet [8] data
using MLCVNet [50] detections on train scenes.

For test-time optimization, we optimize for part and shape codes using an
Adam optimizer with learning rate of 3e-4 for 600 iterations. The learning rate
is decreased by factor of 10 after 300 iterations. To enable more flexibility to
capture input details, we enable optimization of the decoder weights for parts
and shape after 400 iterations. Optimization for each part takes ≈ 90 seconds.
For further implementation and training details, we refer to the supplemental.

4 Results

We evaluate our Neural Part Priors for semantic part completion on real-world
RGB-D scans from ScanNet [8]. We use the official train/val/test split of 1045/156/
312 scans. In order to evaluate part segmentation in these real-world scenes, we

Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

SG-NN[9] + MLCVNet[50] + PointGroup[27] 0.056 0.121 0.110 0.161 0.406 0.034 0.148 0.088 0.257 0.390 0.300 0.229 0.306 0.488 0.328 0.293
MLCVNet[50] + StructureNet[31] 0.025 0.101 0.092 0.090 0.359 0.041 0.118 0.059 0.480 0.356 0.195 0.331 0.267 0.342 0.329 0.413
Bokhovkin et al.[3] 0.027 0.059 0.095 0.102 0.207 0.031 0.087 0.049 0.548 0.542 0.224 0.328 0.442 0.375 0.409 0.490

Ours 0.017 0.045 0.098 0.090 0.219 0.028 0.083 0.041 0.503 0.611 0.213 0.388 0.445 0.335 0.416 0.473

Table 2: Evaluation of part segmentation on Scan2CAD [1]. We evaluate part
segmentation only on observed scan geometry, in comparison with state-of-the-
art part segmentation [27,31] and semantic part completion [3].

Neural Part Priors 11

Fig. 4: Qualitative comparison of NPPs with point [27,31] and voxel-based [3]
state of the art on ScanNet scans with Scan2CAD+PartNet ground truth. Our
joint optimization across part priors enables more consistent, accurate part de-
compositions.

12 A. Bokhovkin, A. Dai

use the Scan2CAD [1] annotations of CAD model alignments from ShapeNet [5]
to these scenes, and the PartNet [32] part annotations for the ShapeNet objects.
To construct our part latent space, we train on PartNet and train a projec-
tion from train ScanNet objects to their PartNet annotations; we also train all
baselines on the same ScanNet+PartNet data. We consider 6 major object class
categories representing the majority of parts, comprising a total of 28 part types.

All methods are provided the same MLCVNet bounding boxes, which contain
at least 40% of the closest annotated shape from Scan2CAD[1] dataset.

Evaluation Metrics. Since PartNet shapes aligned to real-world ScanNet ge-
ometry do not have precise geometric alignments, due to inexact synthetic-real
associations, our evaluation metrics aim to characterize the quality of part de-
compositions that fit well to the real-world geometry, as well as accurately rep-
resent complete object geometry. We evaluate accuracy of the part segmentation
with respect to the ScanNet object, and object completion with respect to the
complete object geometry from PartNet.

Accuracy measures part segmentation predictions with respect to PartNet
labels projected onto ScanNet object geometry, as a single-sided chamfer distance
from the partial ScanNet object to the predicted part decomposition (as we lack
complete real-world geometry available for evaluation in the other direction).

Completion evaluates a bi-directional Chamfer distance between the pre-
dicted part decomposition against the PartNet labeled shape.

For evaluation, we sample 10, 000 points per part from predicted and ground-
truth mesh surfaces, which are then transformed to the coordinate space of Scan-
Net. We consider all evaluation metrics across each part category corresponding
to an object class, and evaluate class average over the categories, and instance
average over part instances. Each shape instance is evaluated over a union of
predicted and ground-truth parts, and then summed to represent evaluation for
this shape. If any predicted or ground-truth part does not correspond to the
other, we use the center of the respective shape for evaluation.

To evaluate part segmentation of only the observed input geometry without
considering completion, we use Chamfer distance and IoU. As ground truth, we
project part labels from aligned PartNet shapes onto the ScanNet mesh surface.
Predicted mesh part labels are projected to ScanNet to obtain predicted part
segmentation. We similarly use 10, 000 sampled points per part for these metrics.

Comparison to state of the art. Tab. 1 shows a comparison to state of the
art on semantic part completion for real-world ScanNet scans, with qualitative
results shown in Fig. 4. We compare with Bokhovkin et al. [3], which lever-
ages coarse 323 pre-computed geometric priors for semantic part completion
as well as state-of-the-art part segmentation approach StructureNet [31]. Since
part segmentation can also be cast as an instance segmentation approach, we
also compare with PointGroup [27]. Each of these methods use the same object
detection results from MLCVNet [50]; since PointGroup does not predict any
geometric completion, we provide additional scan completion from SG-NN [9].
We note that since Bokhovkin et al. [3] predicts solid part geometry as 323

Neural Part Priors 13

voxels, we use Marching Cubes to extract a surface with which to evaluate. In
contrast to these approaches which estimate part decompositions directly and
independently, our NPPs enable joint optimization over all parts to fit precisely
to the observed scan geometry, resulting in improved accuracy and completion
performance. Several additional qualitative results are shown in Fig. 5.

Part segmentation on 3D scans. We also evaluate part segmentation in
Tab. 2, which considers segmentation of only the observed scan geometry, with-
out any geometric completion. We intersect each method’s part predictions with
the original scan geometry to evaluate this part segmentation, in comparison
with Bokhovkin et al. [3], StructureNet [31], and PointGroup [27]. By jointly
optimizing over the parts of an object to fit to its observed scan geometry, our
approach improves notably in part segmentation performance.

What is the effect of scene-consistent optimization? Tab. 3 and Fig. 4
show the effect of scene-consistent optimization. This improves results over w/o
Scene Consistency, with somewhat stronger effect on categories that more of-
ten have repeated instances (e.g., chair, table, bed in offices, classrooms, hotel
rooms). We see a much more noticeable effect in qualitative effect, with much
more consistent part decompositions for similar objects in a scene, even when
seen under fairly different partial views. This more holistic optimization enables
more consistent reasoning about objects and their parts in a scene.

What is the impact of test-time optimization and projection initial-
ization? We consider our approach without using a learned projection mapping
to the latent part space as initialization for test-time optimization to fit to the
observed scan geometry, and also evaluate only the projection mapping without
any test-time optimization, shown in Tab. 3. The initial projection helps signifi-
cantly to obtain a good initialization for test-time optimization (w/o Projection
Map), while the projection results provide a good estimate but imprecise fit to
the observed scene geometry (w/o Test-Time Opt). By leveraging both, we can
achieve the best representation of the input scan as its part decomposition.

Effect of synthetic pre-training. We also evaluate the effect of synthetic pre-
training of the part segmentation and projection mappings to the part and shape
latent spaces in Tab. 3 (w/o Synthetic Pretrain). Here, the additional quantity
and diversity of data helps to avoid overfitting to more limited real data.

Chamfer Distance (↓) – Accuracy Chamfer Distance (↓) – Completion

Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

w/o Projection Map. 0.032 0.156 0.140 0.249 0.352 0.029 0.160 0.081 0.026 0.144 0.137 0.192 0.309 0.025 0.139 0.070
w/o Synthetic Pretrain 0.026 0.079 0.116 0.158 0.152 0.035 0.094 0.052 0.029 0.097 0.132 0.206 0.234 0.033 0.122 0.061
w/o Test-Time Opt. 0.019 0.060 0.105 0.145 0.200 0.023 0.093 0.047 0.022 0.085 0.127 0.183 0.198 0.024 0.107 0.052
w/o Scene Consistency 0.016 0.056 0.096 0.138 0.207 0.032 0.091 0.043 0.019 0.079 0.111 0.149 0.206 0.030 0.099 0.047
Ours 0.014 0.054 0.096 0.141 0.199 0.031 0.089 0.041 0.018 0.076 0.110 0.155 0.195 0.029 0.097 0.046

Table 3: Ablation study evaluating semantic part completion on Scan2CAD [1].
We show the effect of our projection mapping initialization, and test-time opti-
mization to fit to the for our design decisions. Overall, using both results in the
best performance in RGB-D scan part decompositions.

14 A. Bokhovkin, A. Dai

Fig. 5: Additional qualitative results on ScanNet[8] with Scan2CAD[1] and
PartNet[32] targets, showing our consistent, complete part decompositions.

Limitations. While our NPPs shows strong promise towards accurate, high
resolution characterization of semantic parts in real-world scenes required for
finer-grained semantic scene understanding, various limitations remain. Our part
latent space is trained in its canonically oriented space, and while we can op-
timize for shape orientations with ICP, a joint optimization or an equivariant
formulation can potentially resolve sensitivity to misaligned orientations. Finally,
our scene-consistent optimization for similar shapes in a scene makes an impor-
tant step towards holistic scene reasoning, but does not consider higher-level,
stylistic similarity that is often shared across different objects in the same scene
(e.g., matching furniture set for desk, shelves, chair) which could provide notable
insight towards comprehensive scene understanding.

5 Conclusion

We have presented Neural Part Priors, which introduces learned, optimizable
part priors for fitting complete part decompositions to objects detected in real-
world RGB-D scans. We learn a latent part space over all object parts, charac-
terized with learned neural implicit functions. This allows for traversing over the
part space at test time to jointly optimize across all parts of an object such that
it fits to the observed scan geometry while maintaining consistency with any
similar detected objects in the scan. This results in improved part segmentation

Neural Part Priors 15

as well as completion in noisy, incomplete real-world RGB-D scans. We hope
that this help to open up further avenues towards holistic part-based reasoning
in real-world environments.

Acknowledgements

This project is funded by the Bavarian State Ministry of Science and the Arts
and coordinated by the Bavarian Research Institute for Digital Transformation
(bidt).

References

1. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.:
Scan2cad: Learning CAD model alignment in RGB-D scans. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019. pp. 2614–2623 (2019) 2, 10, 12, 13, 14

2. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion
IV: control paradigms and data structures. vol. 1611, pp. 586–606. Spie (1992) 8

3. Bokhovkin, A., Ishimtsev, V., Bogomolov, E., Zorin, D., Artemov, A., Burnaev,
E., Dai, A.: Towards part-based understanding of rgb-d scans. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
7484–7494 (2021) 2, 3, 4, 10, 11, 12, 13, 19, 20, 21

4. Chang, A.X., Dai, A., Funkhouser, T.A., Halber, M., Nießner, M., Savva, M.,
Song, S., Zeng, A., Zhang, Y.: Matterport3d: Learning from RGB-D data in indoor
environments. In: 2017 International Conference on 3D Vision, 3DV 2017, Qingdao,
China, October 10-12, 2017. pp. 667–676 (2017) 2, 3

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015) 2, 12

6. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 5556–5565 (2015) 2

7. Choy, C.B., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski con-
volutional neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 3075–3084
(2019) 2

8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niessner, M.: Scan-
net: Richly-annotated 3d reconstructions of indoor scenes. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (July 2017) 2, 3, 6,
10, 14, 23

9. Dai, A., Diller, C., Nießner, M.: Sg-nn: Sparse generative neural networks for self-
supervised scene completion of rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 849–858 (2020) 4,
10, 12

10. Dai, A., Nießner, M.: 3dmv: Joint 3d-multi-view prediction for 3d semantic scene
segmentation. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 452–468 (2018) 2

16 A. Bokhovkin, A. Dai

11. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time globally consistent 3d reconstruction using on-the-fly surface reintegration.
ACM Transactions on Graphics (ToG) 36(4), 1 (2017) 2

12. Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nießner, M.: Scancomplete:
Large-scale scene completion and semantic segmentation for 3d scans. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
4578–4587 (2018) 4

13. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5868–5877 (2017) 4

14. Dai, A., Siddiqui, Y., Thies, J., Valentin, J., Nießner, M.: Spsg: Self-supervised
photometric scene generation from rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1747–1756 (2021) 4

15. Engelmann, F., Bokeloh, M., Fathi, A., Leibe, B., Nießner, M.: 3d-mpa: Multi-
proposal aggregation for 3d semantic instance segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9031–
9040 (2020) 2, 3

16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern
recognition. pp. 3354–3361. IEEE (2012) 3

17. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4857–4866 (2020) 4

18. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learn-
ing shape templates with structured implicit functions. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7154–7164 (2019)
4

19. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3d models. Computers
& Graphics 33(3), 262–269 (2009) 4

20. Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with
submanifold sparse convolutional networks. In: 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. pp. 9224–9232 (2018) 2

21. Han, L., Zheng, T., Xu, L., Fang, L.: Occuseg: Occupancy-aware 3d instance seg-
mentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 2940–2949 (2020) 2, 3

22. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
a network with an edge. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)
4

23. Hou, J., Dai, A., Nießner, M.: 3d-sis: 3d semantic instance segmentation of rgb-d
scans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4421–4430 (2019) 2, 3

24. Hou, J., Dai, A., Nießner, M.: Revealnet: Seeing behind objects in rgb-d scans.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2098–2107 (2020) 4

25. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3d shapes via subspace clustering. In:
Computer graphics forum. vol. 31, pp. 1703–1713. Wiley Online Library (2012) 4

26. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear program-
ming. In: Proceedings of the 2011 SIGGRAPH Asia Conference. pp. 1–12 (2011)
4

Neural Part Priors 17

27. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: Pointgroup: Dual-set point
grouping for 3d instance segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 4867–4876 (2020) 3, 10,
11, 12, 13, 19, 20, 21

28. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3d shape segmentation
with projective convolutional networks. In: proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3779–3788 (2017) 4

29. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987) 9

30. Luo, T., Mo, K., Huang, Z., Xu, J., Hu, S., Wang, L., Su, H.: Learning to group:
A bottom-up framework for 3d part discovery in unseen categories. arXiv preprint
arXiv:2002.06478 (2020) 4

31. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., Guibas, L.J.: Struc-
turenet: Hierarchical graph networks for 3d shape generation. arXiv preprint
arXiv:1908.00575 (2019) 4, 7, 10, 11, 12, 13, 19, 20, 21

32. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su, H.: Part-
net: A large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 909–918 (2019) 2, 4, 7, 10, 12, 14, 19

33. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense
surface mapping and tracking. In: 2011 10th IEEE international symposium on
mixed and augmented reality. pp. 127–136. IEEE (2011) 2

34. Nie, Y., Hou, J., Han, X., Nießner, M.: Rfd-net: Point scene understanding by
semantic instance reconstruction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4608–4618 (2021) 3, 4

35. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruction
at scale using voxel hashing. ACM Transactions on Graphics (ToG) 32(6), 1–11
(2013) 2

36. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019) 4, 6

37. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional oc-
cupancy networks. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 523–540. Springer
(2020) 4

38. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: Imvotenet: Boosting 3d object detec-
tion in point clouds with image votes. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 4404–4413 (2020) 3

39. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object de-
tection in point clouds. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 9277–9286 (2019) 3, 6

40. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp.
77–85 (2017) 8, 23, 24

41. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings
third international conference on 3-D digital imaging and modeling. pp. 145–152.
IEEE (2001) 8

18 A. Bokhovkin, A. Dai

42. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D.: Unsupervised
co-segmentation of a set of shapes via descriptor-space spectral clustering. In: Pro-
ceedings of the 2011 SIGGRAPH Asia Conference. pp. 1–10 (2011) 4

43. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1746–1754 (2017) 4

44. Tung, H.Y.F., Cheng, R., Fragkiadaki, K.: Learning spatial common sense with
geometry-aware recurrent networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2595–2603 (2019) 3

45. Van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., Cohen-Or,
D.: Co-hierarchical analysis of shape structures. ACM Transactions on Graphics
(TOG) 32(4), 1–10 (2013) 4

46. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.:
Symmetry hierarchy of man-made objects. In: Computer graphics forum. vol. 30,
pp. 287–296. Wiley Online Library (2011) 4

47. Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A.: Elastic-
fusion: Dense slam without a pose graph. Robotics: Science and Systems (2015)
2

48. Wu, R., Zhuang, Y., Xu, K., Zhang, H., Chen, B.: Pq-net: A generative part seq2seq
network for 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 829–838 (2020) 4

49. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
pp. 1912–1920 (2015) 4

50. Xie, Q., Lai, Y.K., Wu, J., Wang, Z., Zhang, Y., Xu, K., Wang, J.: Mlcvnet: Multi-
level context votenet for 3d object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10447–10456 (2020)
3, 6, 10, 12, 23

51. Yi, L., Guibas, L., Hertzmann, A., Kim, V.G., Su, H., Yumer, E.: Learning hier-
archical shape segmentation and labeling from online repositories. arXiv preprint
arXiv:1705.01661 (2017) 4

52. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q.,
Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016) 4

53. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: Gspn: Generative shape pro-
posal network for 3d instance segmentation in point cloud. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3947–
3956 (2019) 4

Neural Part Priors 19

A Additional qualitative analysis

In Figures 6 and 7, we show additional qualitative results of comparison of
NPPs to baseline methods. We can see that StructureNet [31] and Bokhovkin et
al. [3] often produce incomplete and inaccurate shapes, can include inconsistent
parts (e.g. predicting only one chair arm or predicting two types of legs for one
chair). The advanced point cloud segmentation method PointGroup [27] is able
to predict consistent part types for shapes but produces fairly noisy geometry
for these parts. In addition, when comparing to baselines and NPPs without
applying scene-aware constraints, we can clearly see a large amount of diversity
within shapes that should be similar or identical within one scan.

B Interpolation properties of learned latent part spaces

In Figure 8, we show the interpolation capabilities of the part latent spaces that
we use in NPPs to traverse during test-time optimization. Although each part
space has been learned individually, their interpolations can produce consistent
shapes.

C Part types per category

In Figure 9 we present the shape categories and the corresponding parts that we
use in our framework. There are 6 shape categories and 28 part types in total.

D Implementation Details

We provide further implementation details; note that parameters reported here
are for the ‘chair’ category, and other category parameter differences are specified
in Table 4.

D.1 Pretrain decoders

We first train our latent part and shape spaces on the synthetic PartNet [32]
dataset. This corresponds to the tasks ‘Train decoder (shape)’, ‘Train decoder
(parts)’ in the Table 4. The part and shape decoders are all MLPs composed of 8
linear layers of 512 dimensions each, using ReLU nonlinearities with a final tanh
for SDF output. The detailed architecture is shown in Tables 9, 10. To train the
shape decoder, we use an Adam optimizer with a batch size of 24 and learning
rate of 5e-5 (‘lr’ in the Table 4) for network weights (with a factor 0.5 (‘lr factor’)
and decay interval of 500 epochs (‘lr decay int.’)) and 1e-4 for latent parameters
(with a factor 0.5 and decay interval of 500 epochs), and train for 2000 epochs.
For the part decoder, we extend every part latent with one-hot encoded part
type and train the part decoder using an Adam optimizer with a batch size of
48 and learning rate of 5e-5 for network weights (with a decay factor of 0.5 and
decay interval of 400 epochs) and 1e-4 for latent parameters (with a decay factor
0.5 and decay interval of 400 epochs), and train for 2000 epochs.

20 A. Bokhovkin, A. Dai

Fig. 6: Additional qualitative comparison of NPPs with point [27,31] and voxel-
based [3] state of the art on ScanNet scans with Scan2CAD+PartNet ground
truth.

Neural Part Priors 21

Fig. 7: Additional qualitative comparison of NPPs with point [27,31] and voxel-
based [3] state of the art on ScanNet scans with Scan2CAD+PartNet ground
truth.

22 A. Bokhovkin, A. Dai

Fig. 8: Part interpolations through our learned latent part spaces for different
shape classes.

Neural Part Priors 23

Fig. 9: Part specifications per category for the parts used in our approach. Note
that ’cabinet’ and ’bookshelf’ have the same set of parts.

D.2 Pre-training for latent projection and part segmentation

We then train the projection mapping into the learned part and shape spaces as
well as the part segmentation. This part corresponds to the task ‘Train projec-
tion’ in the Table 4. Our model is pre-trained on synthetic PartNet data using
virtually scanned incomplete inputs to take advantage of the large amount of
synthetic data. We use an Adam optimizer with batch size 64 and learning rate
1e-3 (‘lr’ in the Table 4) decayed by half (‘lr factor’) every 12 epochs (‘lr decay
int.’) for 35 epochs. We use a large and a small PointNet-based [40] network
(small (‘PN-small’) and large (‘PN-big’)) to segment an input TSDF into parts
and background. We refer to the Tables 7, 8 as architectures of ‘PN-small’ and
‘PN-big’ denoted in the Table 4.

D.3 Fine-tuning on ScanNet data

To apply to real-world observations, we fine-tune the projections and part seg-
mentation on ScanNet [8] data using MLCVNet [50] detections on train scenes.
We use an Adam optimizer with batch size 64, learning rate 2e-4 (‘lr’ in the
Table 4) decayed by a factor of 0.2 (‘lr factor’) every 40 epochs (‘lr decay int.’)
for 80 epochs.

D.4 Test-time optimization

For test-time optimization, we optimize for part and shape codes using an Adam
optimizer with learning rate of 3e-4 (‘lr’ in the Table 4) for 600 iterations. The

24 A. Bokhovkin, A. Dai

learning rate is multiplied by factor of 0.1 (‘lr factor’) after 300 iterations (‘lr
decay int.’)). This part corresponds to the task ‘Test-time opt.’ in the Table 4.

To enable more flexibility to capture input details, we enable optimization
of the decoder weights for parts and shape after 400 iterations. We have use
the first and the second linear layers of part decoder (‘part dec. layers opt.’) to
optimize simultaneously with latent vectors optimization using Adam optimizer
with learning rate of 3e-4 (‘lr’) for 600 iterations. The learning rate is multiplied
by factor of 0.1 (‘lr factor (part dec.)’) after 300 iterations (‘lr decay int. (part
dec.)’)).

In Eqs. (5), (6) we use a weight wtrunc for points close to and further away
from the surface. We have a set Aunif.noise of points that have a distance to sur-
face greater than dtrunc = 0.16m. Having decoded the projection of the shape
{z̃s}, we uniformly sample points around decoded shape no closer than 0.2m to
the surface of this shape, and assign truncation distance dtrunc to these points.
We also add them to the set Aunif.noise. For the shape decoder and for the set
Aunif.noise we set wtrunc = 5.0 (‘wtrunc (shape unif. noise)’ in the Table 4); for
part decoder we set wtrunc = 20.0 (‘wtrunc (parts unif. noise)’). Additionally,
while optimizing the particular part k during test-time optimization we also use
the points corresponding to other parts as noise with distance dtrunc and denote
this set of points as Apartnoise. Adding this set into optimization is necessary to
decrease intersections between different part geometries after test-time optimiza-
tion. We set wtrunc = 5.0 (‘wtrunc (part noise)’) for this set of points. Finally, in
Eq. (4) we use an additional weight for loss consistency term, for which we set
wcons = 200.0.

To encourage geometric completeness during test-time optimization, we sam-
ple points with distances to surface from the decoded shape S and parts {Pk}
(decoded from {z̃s} and {z̃pk}), and add them to TSDF D (‘add pts. to shape’

in the Table 4) or {Dp}Nparts

p=1 (‘add pts. to parts’) to the regions where points
in S or {Pk} are present and non-background points with distance d < dtrunc
in D and {Dp}Nparts

p=1 (which we call meaningful points) are missing. We add
only those points from S and {Pk} which are not closer than dthr to meaningful
points.

Finally, we scale the coordinates of input TSDF with a scale factor (‘scale
factor’) to align better to the learned canonical space of synthetic shapes.

Optimization for each part takes approximately 90 seconds.

D.5 Network Architecture

We also provide an extensive information about architecture of every submodel
that we use in our framework. Table 5 shows the architecture of voxel encoder
that we use to encode an input occupancy grid. Table 6 shows the architecture of
a module that predicts the part decomposition of an input object. The architec-
tures of a small PointNet-like [40] network and a big PointNet-like network that
we use to segment an input TSDF are shown in Tables 7, 8. Finally, we provide
details about the architecture of shape and parts MLP decoders in Tables 9, 10.

Neural Part Priors 25

Task Parameter Chair Table Cabinet Bookshelf Bed Trashcan

Train decoder (shape) # epochs 2000 2400 8000 8000 16000 16000
Train decoder (shape) batch size 24 24 24 24 24 24
Train decoder (shape) optimizer Adam Adam Adam Adam Adam Adam
Train decoder (shape) lr (weights) 5e-5 1e-4 1e-4 1e-4 1e-4 1e-4
Train decoder (shape) lr factor (weights) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (shape) lr decay int. (weights) 500 600 1500 1500 4000 3000
Train decoder (shape) lr (lat.) 1e-4 2e-4 2e-4 2e-4 2e-4 2e-4
Train decoder (shape) lr factor (lat.) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (shape) lr decay int. (lat.) 500 600 1500 1500 4000 3000

Train decoder (parts) # epochs 1100 1400 2000 2000 10000 10000
Train decoder (parts) batch size 48 48 48 48 48 48
Train decoder (parts) optimizer Adam Adam Adam Adam Adam Adam
Train decoder (parts) lr (weights) 5e-5 1e-4 1e-4 1e-4 1e-4 1e-4
Train decoder (parts) lr factor (weights) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (parts) lr decay int. (weights) 400 400 800 800 3600 3600
Train decoder (parts) lr (lat.) 1e-4 2e-4 2e-4 2e-4 2e-4 2e-4
Train decoder (parts) lr factor (lat.) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (parts) lr decay int. (lat.) 400 400 800 800 3600 3600

Train projection # epochs 35 30 60 60 250 200
Train projection batch size 64 64 64 64 64 64
Train projection optimizer Adam Adam Adam Adam Adam Adam
Train projection lr 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Train projection lr factor 0.5 0.5 0.5 0.5 0.5 0.5
Train projection lr decay int. 12 20 40 40 150 120
Train projection segm. network PN-small PN-big PN-big PN-big PN-small PN-small

Fine-tune # epochs 80 80 120 120 125 70
Fine-tune batch size 64 64 64 64 64 64
Fine-tune optimizer Adam Adam Adam Adam Adam Adam
Fine-tune lr 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
Fine-tune lr factor 0.2 0.2 0.2 0.2 0.2 0.2
Fine-tune lr decay int. 40 40 60 60 60 40

Test-time opt. # iterations 600 600 600 600 600 600
Test-time opt. optimizer Adam Adam Adam Adam Adam Adam
Test-time opt. lr (lat.) 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Test-time opt. lr factor (lat.) 0.1 0.1 0.1 0.1 0.1 0.1
Test-time opt. lr decay int. (lat.) 300 300 300 300 300 300
Test-time opt. shape dec. layers opt. - - - - 1,2 1,2
Test-time opt. lr (shape dec.) - - - - 1e-4 1e-4
Test-time opt. lr factor (shape dec.) - - - - 0.1 0.1
Test-time opt. lr decay int. (shape dec.) - - - - 300 300
Test-time opt. part dec. layers opt. 1,2 1,2 1,2 1,2 - -
Test-time opt. lr (part dec.) 3e-4 3e-4 3e-4 3e-4 - -
Test-time opt. lr factor (part dec.) 0.1 0.1 0.1 0.1 - -
Test-time opt. lr decay int. (part dec.) 300 300 300 300 - -
Test-time opt. wtrunc (shape unif. noise) 5.0 3.0 3.0 3.0 1.0 1.0
Test-time opt. wtrunc (parts unif. noise) 20.0 12.0 12.0 12.0 1.0 5.0
Test-time opt. wtrunc (part noise) 5.0 3.0 10.0 10.0 10.0 5.0
Test-time opt. wcons 200.0 300.0 300.0 300.0 30.0 200.0
Test-time opt. add pts. to shape ✓ ✓ ✓ ✓ ✓ -
Test-time opt. dist thr. (shape) 0.16m 0.16m 0.5m 0.5m 0.75m -
Test-time opt. add pts. to parts - ✓ ✓ ✓ ✓ -
Test-time opt. dist thr. (part) - 0.16m 0.5m 0.5m 0.75m -
Test-time opt. scale factor 1.0 1.2 1.4 1.4 1.1 1.1

Table 4: Hyperparameters used for training submodels used in our framework.

26 A. Bokhovkin, A. Dai

Encoder Input Layer Type Input Size Output Size Kernel Size Stride Padding

conv0 scan occ. grid Conv3D (1, 32, 32, 32) (32, 16, 16, 16) (5, 5, 5) (2, 2, 2) (2, 2, 2)
gnorm0 conv0 GroupNorm (32, 16, 16, 16) (32, 16, 16, 16) - - -
relu0 gnorm0 ReLU (32, 16, 16, 16) (32, 16, 16, 16) - - -
pool1 relu0 MaxPooling (32, 16, 16, 16) (32, 8, 8, 8) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv1 pool1 Conv3D (32, 8, 8, 8) (64, 8, 8, 8) (3, 3, 3) (1, 1, 1) (1, 1, 1)
gnorm1 conv1 GroupNorm (64, 8, 8, 8) (64, 8, 8, 8) - - -
relu1 gnorm1 ReLU (64, 8, 8, 8) (64, 8, 8, 8) - - -
pool2 relu1 MaxPooling (64, 8, 8, 8) (64, 4, 4, 4) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv2 pool2 Conv3D (64, 4, 4, 4) (128, 2, 2, 2) (5, 5, 5) (2, 2, 2) (2, 2, 2)
gnorm2 conv2 GroupNorm (128, 2, 2, 2) (128, 2, 2, 2) - - -
relu2 gnorm2 ReLU (128, 2, 2, 2) (128, 2, 2, 2) - - -
pool3 relu2 MaxPooling (128, 2, 2, 2) (128, 1, 1, 1) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv3 pool3 Conv3D (128, 1, 1, 1) (256, 1, 1, 1) (3, 3, 3) (1, 1, 1) (1, 1, 1)
gnorm3 conv3 GroupNorm (256, 1, 1, 1) (256, 1, 1, 1) - - -
relu3 gnorm3 ReLU (256, 1, 1, 1) (256, 1, 1, 1) - - -

shape feature relu3 Flatten (256, 1, 1, 1) (256) - - -

Table 5: Layer specification for detected object encoder.

Child decoder Input Layer Type Input Size Output Size

lin proj shape feature ReLU(Linear) 256 256
node feature lin proj ReLU(Linear) 256 256

lin0 node feature Linear 256 2560
relu0 lin0 ReLU 2560 2560

reshape0 relu0 Reshape 2560 (10, 256)
node exist reshape0 Linear (10, 256) (10, 1)

concat0 (reshape0, reshape0) Concat. (10, 256), (10, 256) (10, 10, 512)
lin1 concat0 Linear (10, 10, 512) (10, 10, 256)
relu1 lin1 ReLU (10, 10, 256) (10, 10, 256)

edge exist relu1 Linear (10, 10, 256) (10, 10, 1)

mp (relu1, edge exist, reshape0) Mes. Passing (10, 10, 256), (10, 10, 1), (10, 256) (10, 768)
lin2 mp Linear (10, 768) (10, 256)
relu2 lin2 ReLU (10, 256) (10, 256)

node sem relu2 Linear (10, 256) (10, #classes)

lin3 relu2 Linear (10, 256) (10, 256)
(10, child feature) lin3 ReLU (10, 256) (10, 256)

lin4 node feature ReLU(Linear) 256 256
rotation cls lin3 Linear 256 12

Table 6: Layer specification for decoding an object into its semantic part struc-
ture.

Pts. classifier (small) Input Layer Type Input Size Output Size

input feature (TSDF, node feature, rotation cls) Concat. (#pts, 4), 256, 12 (#pts, 272)
lin cls 0 input feature ReLU(Linear) (#pts, 272) (#pts, 128)
lin cls 1 lin cls 0 ReLU(Linear) (#pts, 128) (#pts, 128)
lin cls 2 lin cls 1 ReLU(Linear) (#pts, 128) (#pts, 128)

glob feat 0 lin cls 2 MaxPooling1D (#pts, 128) (1, 128)
glob feat 1 glob feat 0 Repeat (1, 128) (#pts, 128)
lin cls 3 (lin cls 1, glob feat 1) Concat (#pts, 128), (#pts, 128) (#pts, 256)
lin cls 4 lin cls 3 ReLU(Linear) (#pts, 256) (#pts, 128)
lin cls 5 lin cls 4 ReLU(Linear) (#pts, 128) (#pts, 128)
lin cls 6 lin cls 5 Linear (#pts, 128) (#pts, #classes)

Table 7: Layer specification for segmenting input TSDF using small PointNet-
like network.

Neural Part Priors 27

Pts. classifier (big) Input Layer Type Input Size Output Size

input feature (TSDF, node feature, rotation cls) Concat. (#pts, 4), 256, 12 (#pts, 272)
lin cls 0 input feature ReLU(Linear) (#pts, 272) (#pts, 256)
lin cls 1 lin cls 0 ReLU(Linear) (#pts, 256) (#pts, 128)
lin cls 2 lin cls 1 ReLU(Linear) (#pts, 128) (#pts, 128)

glob feat 0 lin cls 2 MaxPooling1D (#pts, 128) (1, 128)
glob feat 1 glob feat 0 Repeat (1, 128) (#pts, 128)
lin cls 3 lin cls 2 ReLU(Linear) (#pts, 128) (#pts, 64)
lin cls 4 lin cls 3 ReLU(Linear) (#pts, 64) (#pts, 64)

glob feat 2 lin cls 4 MaxPooling1D (#pts, 64) (1, 64)
glob feat 3 glob feat 2 Repeat (1, 64) (#pts, 64)
lin cls 5 (lin cls 1, glob feat 1, glob feat 3) Concat (#pts, 128), (#pts, 128), (#pts, 64) (#pts, 320)
lin cls 6 lin cls 5 ReLU(Linear) (#pts, 320) (#pts, 128)
lin cls 7 lin cls 6 ReLU(Linear) (#pts, 128) (#pts, 64)
lin cls 8 lin cls 7 Linear (#pts, 64) (#pts, #classes)

Table 8: Layer specification for segmenting input TSDF using big PointNet-like
network.

Implicit decoder Input Layer Type Input Size Output Size

lin proj 0 node feature ReLU(Linear) 256 512
lin proj 1 lin proj 0 ReLU(Linear) 512 512
lin proj 2 lin proj 1 ReLU(Linear) 512 512
lin proj 3 lin proj 2 ReLU(Linear) 512 512
lin proj 4 lin proj 3 Linear 512 256
lin pts 0 (lin proj 4, TSDF pts.) Concat. 256, 3 259
lin pts 1 lin pts 0 Linear 259 512
lin bn 1 lin pts 1 BatchNorm 512 512
lin relu 1 lin bn 1 ReLU 512 512
lin drop 1 lin relu 1 Dropout 512 512
lin pts 2 lin pts 1 Linear 512 512
lin bn 2 lin pts 2 BatchNorm 512 512
lin relu 2 lin bn 2 ReLU 512 512
lin drop 2 lin relu 2 Dropout 512 512
lin pts 3 lin pts 2 Linear 512 512
lin bn 3 lin pts 3 BatchNorm 512 512
lin relu 3 lin bn 3 ReLU 512 512
lin drop 3 lin relu 3 Dropout 512 512
lin pts 4 lin pts 3 Linear 512 512 - dim(lin pts 0)
lin bn 4 lin pts 4 BatchNorm 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin relu 4 lin bn 4 ReLU 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin drop 4 lin relu 4 Dropout 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin pts 5 (lin pts 0, lin drop 4) Concat. dim(lin pts 0), 512 - dim(lin pts 0) 512
lin bn 5 lin pts 5 BatchNorm 512 512
lin relu 5 lin bn 5 ReLU 512 512
lin drop 5 lin relu 5 Dropout 512 512
lin pts 6 lin pts 5 Linear 512 512
lin bn 6 lin pts 6 BatchNorm 512 512
lin relu 6 lin bn 6 ReLU 512 512
lin drop 6 lin relu 6 Dropout 512 512
lin pts 7 lin pts 6 Linear 512 512
lin bn 7 lin pts 7 BatchNorm 512 512
lin relu 7 lin bn 7 ReLU 512 512
lin drop 7 lin relu 7 Dropout 512 512
lin pts 8 lin pts 7 Linear 512 1
lin tanh 7 lin pts 8 Tanh 1 1

Table 9: Layer specification for implicit shape decoder.

28 A. Bokhovkin, A. Dai

Implicit decoder Input Layer Type Input Size Output Size

lin proj 0 child feature ReLU(Linear) 256 512
lin proj 1 lin proj 0 ReLU(Linear) 512 512
lin proj 2 lin proj 1 ReLU(Linear) 512 512
lin proj 3 lin proj 2 ReLU(Linear) 512 512
lin proj 4 lin proj 3 Linear 512 256
lin pts 0 (lin proj 4, part cls. one-hot, TSDF pts.) Concat. 256, #parts, 3 259 + #parts
lin pts 1 lin pts 0 Linear 259 + #parts 512
lin bn 1 lin pts 1 BatchNorm 512 512
lin relu 1 lin bn 1 ReLU 512 512
lin drop 1 lin relu 1 Dropout 512 512
lin pts 2 lin pts 1 Linear 512 512
lin bn 2 lin pts 2 BatchNorm 512 512
lin relu 2 lin bn 2 ReLU 512 512
lin drop 2 lin relu 2 Dropout 512 512
lin pts 3 lin pts 2 Linear 512 512
lin bn 3 lin pts 3 BatchNorm 512 512
lin relu 3 lin bn 3 ReLU 512 512
lin drop 3 lin relu 3 Dropout 512 512
lin pts 4 lin pts 3 Linear 512 512 - dim(lin pts 0)
lin bn 4 lin pts 4 BatchNorm 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin relu 4 lin bn 4 ReLU 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin drop 4 lin relu 4 Dropout 512 - dim(lin pts 0) 512 - dim(lin pts 0)
lin pts 5 (lin pts 0, lin drop 4) Concat. dim(lin pts 0), 512 - dim(lin pts 0) 512
lin bn 5 lin pts 5 BatchNorm 512 512
lin relu 5 lin bn 5 ReLU 512 512
lin drop 5 lin relu 5 Dropout 512 512
lin pts 6 lin pts 5 Linear 512 512
lin bn 6 lin pts 6 BatchNorm 512 512
lin relu 6 lin bn 6 ReLU 512 512
lin drop 6 lin relu 6 Dropout 512 512
lin pts 7 lin pts 6 Linear 512 512
lin bn 7 lin pts 7 BatchNorm 512 512
lin relu 7 lin bn 7 ReLU 512 512
lin drop 7 lin relu 7 Dropout 512 512
lin pts 8 lin pts 7 Linear 512 1
lin tanh 7 lin pts 8 Tanh 1 1

Table 10: Layer specification for implicit part decoder.

	Neural Part Priors: Learning to Optimize Part-Based Object Completion in RGB-D Scans

