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Figure 1. SceneFactor factors the complex task of text-guided 3D scene generation into forming a coarse semantic structure, followed by
refined geometric synthesis. Rather than require a learned model to decide the location, type, size, and local geometry of scene elements
directly, our generation of a coarse semantic box layout enables training a simpler task of layout-guided geometric synthesis. To achieve
this factorized generation, we train semantic and geometric latent diffusion models. Crucially, the proxy semantic map generation enables
user-friendly localized editing of generated scenes by editing in the semantic map with simple box operations (by clicking two box corners),
without requiring re-synthesis of the full scene. Note that input text is colored by semantic categories for visualization purposes only.

Abstract

We present SceneFactor, a diffusion-based approach for
large-scale 3D scene generation that enables controllable
generation and effortless editing. SceneFactor enables
text-guided 3D scene synthesis through our factored diffu-
sion formulation, leveraging latent semantic and geomet-
ric manifolds for generation of arbitrary-sized 3D scenes.
While text input enables easy, controllable generation, text
guidance remains imprecise for intuitive, localized editing
and manipulation of the generated 3D scenes. Our fac-
tored semantic diffusion generates a proxy semantic space
composed of semantic 3D boxes that enables controllable
editing of generated scenes by adding, removing, chang-
ing the size of the semantic 3D proxy boxes that guides
high-fidelity, consistent 3D geometric editing. Extensive
experiments demonstrate that our approach enables high-

fidelity 3D scene synthesis with effective controllable edit-
ing through our factored diffusion approach.

Project page: alexeybokhovkin.github.io/
mesh2tex/

1. Introduction

3D editable generative modeling is crucial to create im-
mersive environments for many applications, such as aug-
mented or virtual reality, video games and films, architec-
tural design, or creating interactive simulations. Such con-
tent creation is inherently creative by nature, and is typically
performed in an iterative process controlled by the user,
with the ability to control and edit in localized regions to
produce the desired output. Thus, a key requirement in gen-
erative 3D modeling is an underlying representation that en-
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ables such intuitive, localized control and editing for users.
While remarkable advances in 2D generative model-

ing have been achieved with diffusion-based methods [26,
48, 52, 58] (even enabling controllability through seman-
tic layouts, human poses, or depth [42, 78]), 3D genera-
tive modeling has largely focused on the unconditional or
text-conditioned synthesis of 3D shapes [11, 18, 36, 56, 57],
while the more challenging problem of large-scale 3D scene
generation remains underexplored. Moreover, these meth-
ods also tend to lack editability, which is a key requirement
of the content creation process – to be able to edit the gen-
erated representation in localized regions without requiring
a re-synthesis of the full output. Editable generative ap-
proaches often lack the ease of editing operations, requir-
ing the user to specify an accurate editing region bound-
ary [3, 40, 53] or conduct extensive prompt engineering to
avoid editing of undesired regions [5, 14, 60].

We thus propose a diffusion-based 3D generative ap-
proach for the synthesis of large-scale 3D scenes that en-
ables intuitive, localized editing of the generated 3D repre-
sentation in two clicks (defining a bounding box) per edited
object. Key to our approach is a learned, latent semantic
feature space which enables localized editability and con-
trol of the 3D scene generation. We learn to map text de-
scriptions of scene regions to 3D semantic layout maps,
which then guide the high-fidelity geometric synthesis of
scene geometry corresponding to the proxy semantics. We
formulate a two-stage latent semantic diffusion approach,
first learning latent semantic and geometric feature spaces
through VQ-VAE training. The latent semantic space is
then modeled by diffusion, condition on text inputs, to pro-
duce a proxy semantic map. We then model the 3D scene
geometry in its latent geometric space, conditioned on the
semantic layout maps through spatial cross-attention to en-
able effective localized modeling of the semantic structure
corresponding to geometric outputs.

Edits can then easily be performed in the semantic
space by specifying the two points defining a bounding box
(which can be automatically filled to match the proxy se-
mantic map characteristics). To characterize the complex-
ity in 3D scenes and handle larger scales, SceneFactor is
trained on scene chunks, which can then be consistently out-
painted to generate arbitrary-sized 3D scene outputs. Exper-
iments show that SceneFactor enables text-guided synthesis
as well as intuitive editing in the proxy semantic domain
(e.g., adding objects by introducing new semantic boxes, as
well as removing, moving, and editing generated objects by
manipulating two corners of their semantic boxes).

In summary, our contributions are:
• the first method for text-guided large-scale 3D scene gen-

eration that enables easy, localized spatial editing for gen-
erated 3D scenes, performed in several mouse clicks.

• a latent semantic diffusion approach to enable two-stage

generation of semantic and geometric latent manifolds
characterizing coarse 3D scene layout and high-fidelity
geometric structures, leveraging spatial cross-attention
for strong spatial guidance of geometric synthesis.

• our latent semantic space enables intuitive, localized edit-
ing of generated 3D scenes without requiring re-synthesis
of the full scene, enabling object addition, removal, re-
placement, and object manipulation while maintaining
global scene consistency.

2. Related Work

2.1. 3D Shape Generation
Recent remarkable advances in 2D image generation have
re-invigorated research in 3D generative modeling, which
has largely focused on shape generation. Directly inspired
by 2D generative models such as latent diffusion mod-
els [52], various methods have been developed to distill in-
formation from large, pretrained 2D models for text-to-3D
radiance field generation [6, 10, 38, 49, 67, 77].

Alternatively, many other methods have focused on di-
rectly generating 3D shape representations by training on
large 3D shape datasets such as ShapeNet [7]. In order to
generate significant detail for high-dimensional 3D objects,
recent approaches focus on generating compressed latent
representations for 3D shapes [9, 41, 69, 73] and efficient
mesh representations [32, 44, 57]. These methods focus on
single-object generation in a canonicalized domain, while
we focus on large-scale scene generation.

3D diffusion-based methods have also been developed
for high-fidelity 3D shape generation. PVD [82] generates
3D point clouds with a hybrid point-voxel representation.
Diffusion-SDF [12], HyperDiffusion [18], NFD [56], and
SDFusion [11] leverage trained 1D, 2D, and 3D representa-
tions to more efficiently encode 3D shape geometry. While
these approaches focus on single object generation, they can
be conceptually applied to 3D scene generation by training
on crops of 3D scenes. Our approach not only focuses on a
factored diffusion approach for high-fidelity 3D scene gen-
eration, but learning a 3D scene representation that enables
intuitive, localized editing for content creation scenarios.

2.2. 3D Scene Generation
Generating 3D scenes remains significantly more challeng-
ing than objects, due to the complexity of scene arrange-
ments, high resolution required to resolve local detail, and
strongly varying sizes [47]. Several approaches have thus
relied on the capacity of image generative models to iter-
atively generate RGB views from text queries in order to
form 3D scenes [20, 28, 59]; this results in impressive lo-
cal appearance, but the lack of 3D reasoning often results
in more incoherent global 3D structures. GAN-based ap-
proaches have enabled 3D-aware scene generation as radi-
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Figure 2. Method overview. We formulate text-guided 3D scene generation as a factored diffusion process, first generating a coarse
semantic box layout representing the text input (left), followed by synthesis of scene geometry corresponding to the generated semantics
(right). This factorization makes complex 3D scene generation more tractable and enables generation of locally editable 3D scenes, which
can be manipulated through box manipulations in the semantic maps. Left: Our high-level semantic generation produces a coarse, box-
level representation of a scene through latent diffusion on a pretrained semantic manifold, conditioned on text captions. This enables
accurate alignment between text input and scene layout, without requiring solving a highly ambiguous generation task for geometric detail.
Right: Conditioned on the coarse semantic box map, we use another latent diffusion model to generate 3D scene geometry, enabling spatial
semantic grounding of generated scene objects and structures. Object categories in the text input are colored for visualization only.

ance fields using depth priors [55] or scene layouts [4], for
improved view synthesis.

A popular approach is to leverage object retrieval in or-
der to create 3D scenes with high-fidelity object structures,
and instead synthesize the scene graph of object layouts
[2, 8, 13, 16, 23, 35, 45, 46, 61, 65, 68, 75, 76, 79]. Due to
the use of object retrieval, scene geometry remains limited
to the object database used for retrieval. Most similar to our
approach are several recent approaches, DiffInDScene [30],
BlockFusion [70], SemCity [34] and XCube [51], which
have been developed directly for large-scale scene gener-
ation, leveraging more flexible 3D representations unre-
stricted by object retrieval. In particular, BlockFusion pro-
duces a scene in a sliding window fashion, conditioned on
a given layout, employing a single triplane latent diffusion
stage. XCube generates the structure of an entire scene at
once, without relying on sliding windows, instead generat-
ing a scene in a hierarchically coarse-to-fine fashion. Our
approach also takes a chunked approach to scene genera-
tion, enabling large-scale synthesis of 3D scenes by chunk-
based outpainting. However, in contrast to state-of-the-art
3D diffusion approaches that focus on direct scene genera-
tion that do not enable editing of scene outputs, we develop
a factored diffusion approach to enable both high-fidelity
geometric synthesis while enabling localized editing of out-
put scenes.

2.3. 3D Object and Scene Editing

Generating controllable 3D object or scene representations
has largely focused on conditional generative modeling for-
mulations, using input text, images, or partial scans to
guide output synthesis. For 3D shapes, methods such
as AutoSDF [41] and ShapeFormer [73] enable 3D shape

generation conditioned on image or partial 3D object in-
puts. 3D diffusion models can also be formulated as con-
ditional diffusion models to enable text- or image-based
3D generation [11, 31, 36, 80]. Research on 3D scenes
has also emphasized conditional generation, largely based
on text and/or scene layout information to generate 3D
scenes [19, 54, 70, 72]. While such conditional gener-
ative approaches enable high-level control over generated
outputs based on adapting the input text, image, or layout,
they would require re-synthesis of the generated output for
adapted inputs, making localized editing challenging.

For 3D shapes, several approaches have been developed
to enable more fine-grained localized shape editing, through
local attention [81] or part-based reasoning [37, 43, 63].
Our approach formulates a factored diffusion approach to
enable localized editing of generated 3D scenes.

3. Method
SceneFactor is a factored diffusion-based approach that
generates large-scale 3D indoor scenes from text, using
a proxy 3D semantic space to enable synthesis of high-
fidelity, controllable 3D scenes. From an input text cap-
tion τ , we first synthesize a coarse 3D semantic layout S,
representing a scene as 3D semantic boxes corresponding
to the text τ . Based on semantic layout S, we then syn-
thesize output scene geometry G. This factors the complex
3D scene generation process to high-level structural gener-
ation, followed by synthesis of geometric detail, enabling
high-fidelity synthesis. Moreover, this enables the output
scene G to be locally edited by simple manipulations per-
formed on S. Both factored semantic and geometric repre-
sentations are generated through conditional latent diffusion
to produce compressed feature representations S and G.
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Figure 3. Chunk-based 3D scene generation. Left: Chunks for a
scene are generated in sliding-window fashion (1-2-3), with over-
lap between generated chunks to ensure scene consistency along
boundaries. Right: Synthesis of a chunk (chunk 3) is based on re-
gions of previously generated chunks (1,2). The purple incomplete
region is then synthesized by inpainting based on the previously
generated blue, green, and yellow regions.

In order to synthesize large-scale scene environments,
training is performed on scene chunks, and a 3D scene is
generated chunk-by-chunk through outpainting. A set of in-
put text descriptions {τk}Nc

k=1 provides high-level user con-
trol over the scene chunk generation, where Nc is the num-
ber of chunks to generate for an output scene.

We first describe the chunking of scenes for training
our factored latent spaces as well as diffusion training in
Sec. 3.1. We then optimize our factored latent semantic and
geometric spaces (Sec. 3.2), followed by diffusion training
over these spaces (Sec. 3.3). Finally, 3D scenes are syn-
thesized by chunk-by-chunk outpainting (Sec. 3.4), and our
factored generation approach enables localized 3D scene
editing of synthesized scenes (Sec. 3.5).

3.1. Chunk-based 3D Scene Generation
To produce 3D scenes of arbitrary sizes, we train our ap-
proach on scene chunks and synthesize output scenes in
chunk-by-chunk fashion. As shown in Fig. 3, a train scene
X is chunked into Nc chunks in sliding-window fashion
along the x and y axes (z remains a constant height).
Chunks are generated with half-chunk overlap.

For a scene X , we then generate Nc chunks with
text captions {τk}Nc

k=1, and corresponding semantic grids
{Sk}Nc

k=1 and geometric grids {Gk}Nc

k=1. Each semantic
chunk Sk contains a grid of one-hot-encodings of seman-
tic boxes for each class category, where the first channel
corresponds to free space, the second to wall/floor and the
remaining 8 channels for object categories. The object cat-
egories are shown in Fig. 4. Each geometric chunk Gk de-
scribes a truncated unsigned distance field representation
of the scene geometry in the chunk. We use cubic-sized
chunks for the VQ-VAE training, with chunks twice as large
(except in the up direction) for diffusion training.

To generate 3D scenes of arbitrary sizes, we describe
chunk-by-chunk synthesis in Sec. 3.4, first generating the
full semantic scene map based on a set of text captions, and
then generating refined scene geometry, leveraging our fac-
tored generation process to disentangle the complex task of
3D scene generation into high-level semantic mapping fol-

lowed by finer-grained geometric synthesis.

3.2. Factored Semantic and Geometric Latent Op-
timization

SceneFactor leverages dual semantic and geometric latent
spaces for factored scene generation, enabling high-fidelity
and editable 3D scene synthesis through disentangling the
3D scene generation task. To obtain both latent semantic
and geometric spaces, we first optimize two models to en-
code compressed feature representations fS and fG that can
be decoded to semantic and geometric chunks S and G.

Geometric distance field chunks G ∈ R128×64×128 are
spatially compressed by a factor of 4 to fG ∈ R32×16×32.
Here, the latent space size is designed to be as small as
possible to encourage effective generative modeling while
still being able to decode to high-fidelity geometry. Se-
mantic one-hot chunks S ∈ Zc×32×16×32, where c = 10
denotes the number of class categories, are also spatially
compressed by a factor of 4 to fS ∈ R8×4×8.

In order to construct latent spaces that are memory effi-
cient and produce smooth manifolds for efficient generation
and editing using diffusion, we optimize for both seman-
tic and geometric latent spaces using 3D VQ-VAEs [64].
Empirically, we found that using VQ-VAEs enabled high
spatial compression with low feature dimensionality, en-
abling significant parameter reduction in encoding high-
dimensional 3D data. Note that both latent semantic and
geometric feature grids fS and fG maintain compressed
feature representations with feature dimensionality of 1, en-
abled through VQ-VAE latent space training. In particular,
we maintain 3D latent grids for both semantics and geom-
etry to enable learning spatial correlation with the decoded
spatial 3D domains. This enables our localized semantic
editing of generated 3D scenes.

We then train a fully-convolutional 3D VQ-VAE for our
geometric latent space, with encoder EG and decoder DG

optimized for geometric reconstruction:

Lgeo = ∥G−DG(EG(G))∥1+Lquant(fG), (1)

where Lquant is the standard VQ-VAE quantization loss.
Analogously, given the semantic encoder ES and decoder
DS for the semantic 3D VQ-VAE, the semantic space is
trained using the loss:

Lsem = LNLL(S,DS(ES(S))) + Lquant(fS), (2)

LNLL(S,DS(ES(S)))=−
c∑

k=1

[S]k log[softmax(DS(ES(S)))]k,

(3)

where [·]k denotes the kth feature channel corresponding to
class k, and Lquant is the standard VQ-VAE quantization
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loss. The 3D latent encodings of semantics and geometry
enables improved reconstruction as well as enabling local-
ized editing based on manipulation of the semantic maps.

3.3. Factored 3D Scene Diffusion
Having obtained our factored latent semantic and geomet-
ric spaces, we can then train diffusion models, first to gen-
erate coarse semantic maps, and then to produce refined
geometric synthesis. We adopt denoising diffusion proba-
bilistic modeling (DDPM [25]) to denoise the semantic and
geometric feature representations fS and fG from isotropic
Gaussian noise in an iterative process. More specifically,
DDPM takes a sample x0 from the input data distribution
q(x) and iteratively adds small portions of Gaussian noise
to obtain a sequence x1, x2, . . . , xT until xT reaches ap-
proximately an isotropic Gaussian N (0, I). According to
DDPM [25], the element xt of this Markov Chain can be
produced using the forward step:

q(xt|xt−1) ∼ N (xt;
√
1− βtxt−1, βtI), (4)

where βt is a variance schedule. During training, DDPM
reverses the diffusion process and learns to predict the de-
noised sample x0 from noisy xt using a model pθ, often
represented as a neural network.

With αt := 1−βt, αt :=
∏t

s=0 αs and ϵ ∼ N (0, I), we
can sample xt directly from x0:

xt =
√
αtx0 +

√
1− αtϵ. (5)

To recover the signal instead of the added noise, we fol-
low [11, 12] for the reverse process. In our implementation,
we use the vt parameterization as vt =

√
αtϵt−

√
1− αtxt.

For our text-to-semantic diffusion model, we construct a
3D variant of OpenAI LDM [17] for the main model, and
use a transformer with the BERT [15] tokenizer to encode
an input text query into a tokenized sequence of features. To
condition the diffusion model, we apply attention where text
features τi are treated as values and latent grids as queries
and keys. Thus, the objective for the latent semantic diffu-
sion model ΨS is the following:

LLDM,sem = ∥ΨS(fS,t, t, τi)− vS,t∥1, (6)

where t denotes the timestep of the diffusion process, fS,t
is the noisy version of the feature fS = fS,0 and vS,t =√
αtϵt −

√
1− αtfS,t is the v-parameterization.

The semantic-to-geometry diffusion model is trained
analogously with semantic maps as a condition. However,
we have found that increasing awareness from local neigh-
bourhoods is essential to capture correlations between se-
mantic map condition and latent grid efficiently. To this
aim, we modify linear layers that predict queries, keys and
values as features of every separate geometric latent grid or
semantic map cell. These linear layers can be viewed as

convolutions with a window size of 1 and thus we employ
convolutional-based attention modules with a window size
of 3, where semantic maps S serve as values and latent grids
as queries and keys. The second-stage diffusion model ΨG

objective is analogous to the first-stage model:

LLDM,geo = ∥ΨG(fG,t, t, fS)− vG,t∥2, (7)

where fG,t is the noisy version of the feature fG = fG,0 and
vG,t =

√
αtϵt −

√
1− αtfG,t is the v-parameterization.

3.4. Outpainting Large-scale 3D Scenes
We train our factored diffusion models on fixed-size scene
chunks; however, 3D scenes can have arbitrary spatial sizes.
Thus, we must expand a generated chunk to form a full
3D scene. We generate such 3D scenes in a chunk-based
sliding-window fashion, using overlaps between neigh-
boring windows. From one or several already predicted
chunks, we formulate the next chunk generation using its
corresponding chunk text condition for inpainting, similar
to RePaint [40]. We first outpaint semantic chunks, and then
refine them to synthesize the corresponding scene geometry.

In Fig. 3, we show the step-by-step generation process
for a simple example scene. The first (blue) chunk of la-
tents is generated conditioned only on its text description.
Our sliding window then moves along the direction of the
arrows. The green chunk is then synthesized by inpaint-
ing, using the overlapping half of the already synthesized
blue region (inpainting only the missing half). Inpainting
is performed by modifying the denoising step, where in-
stead of the classical denoising step formulation fS,t−1 ∼
N (µ̃θ(fS,t; t),Σθ(fS,t; t)) for step t, the inpainting modifi-
cation is applied:

f known
S,t−1 ∼ N (

√
αtf

known
S , (1− αt)I), (8)

f unknown
S,t−1 ∼ N (µ̃θ(fS,t; t),Σθ(fS,t; t)), (9)

fS,t−1 = m⊙ f known
S,t−1 + (1−m)⊙ f unknown

S,t−1 , (10)

where f known
S is a previously generated part of the scene,

and m is a binary mask aligned with the currently gener-
ated chunk with ones denoting the known region within a
chunk. Similarly, the yellow chunk is then inpainted given
the already synthesized green half. The next chunk to be
synthesized is highlighted in red, which shares overlap with
the already synthesized blue, green, and yellow chunks. The
missing purple region of the red chunk is then inpainted.

Since we use sliding windows with a step size of half
of the horizontal chunk size, the unknown region to be in-
painted is always either 25%, 50%, or 100% of the full
chunk size in terms of number of parameters. Once the
semantic map latent representation of a scene is fully out-
painted, we traverse it using the same path of chunks and
decode every chunk latent grid into a semantic map chunk
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Figure 4. Scene editing. SceneFactor enables seamless localized editing through easy manipulation of the 3D semantic box map. We
demonstrate the addition of objects (adding boxes), moving objects (moving an existing semantic box), changing object size (scaling an
existing semantic box), replacing objects (replacing an existing object box with a new one of a different category), and removing objects
(removing an existing semantic box). Note that the rest of the 3D scene remains consistent outside of the editing region.

with the VQVAE decoder DS . During this decoding pro-
cess, the next semantic chunk always overwrites the regions
that were previously decoded. The full scene geometric la-
tent representation is outpainted analogously using the gen-
erated semantic maps as a condition. However, to obtain
the full geometric scene representation we do not perform
chunkwise decoding but decode the entire scene geometric
latent grid using DG to avoid seams between chunks.

3.5. Localized 3D Scene Editing
Crucially, our factored diffusion approach, disentangling
3D scene generation into coarse semantic synthesis fol-
lowed by geometric refinement, enables various localized
scene edits that can be performed by easy semantic box ma-
nipulation of the proxy semantic map representation in just
a few mouse clicks. We demonstrate five example scene
edits (object addition, removal, replacement, size changing,
and displacement) in Fig. 4. We also choose equal reso-
lutions of geometric chunk latents fG and semantic chunk
conditions Sk, ensuring their exact spatial alignment. This
enables edits to propagate seamlessly from Sk to fG, im-
proving scene consistency after editing.

Edits are performed as follows, as simple, user-friendly
box manipulations of the coarse semantic representation,
specifying the two opposite box corners and possibly a new
semantic class. For semantic grid S and corresponding ge-
ometric latent grid FG:
• Object addition: is performed by adding semantic

bounding boxes into an empty editing region RS of the
scene semantic map S. We fill only RS in the grid FG

with Gaussian noise and re-generate geometry for it.
• Object removal: is performed by locating a 3D grid re-

gion RS corresponding to the object to be removed, and
deleting all semantic voxels that belong to it. The same
region of the grid FG is assigned to Gaussian noise and
re-synthesized.

• Object replacement: is performed by replacing the 3D
grid region RS with a semantic box corresponding to the
category of object desired as a replacement. The same
region of the grid FG is then assigned to Gaussian noise
and re-synthesized.

• Changing object size: we first select an object in seman-
tic map S and either increase (by adding new voxels to a
box of the same category) or decrease (removing voxels
by axis-aligned slices) its box size. We consider the edit-
ing region RS to be the union of the original box and new
box, and similarly re-assign the corresponding region of
FG to Gaussian noise for re-synthesis. Note that since we
operate on a semantic rather than instance layout, size in-
creases much larger than the likely size of an object tend
to produce multiple objects to fill the size increase.

• Moving an object: an object is selected by selecting a
box region R1

S in the semantic map S; this box is then
translated to the new region R2

S of the same size as R1
S .

The geometric features are analogously translated from
R1

S to R1
S of the geometrical feature grid FG. The initial

region R1
S of FG is then filled with Gaussian noise, and

both regions are re-synthesized.

4. Experimental Results
4.1. Experimental Setup
Datasets. We train and evaluate our method using a com-
bination of the 3D-FRONT [21] and 3D-FUTURE [22]
datasets. 3D-FUTURE contains >15,000 3D furniture
models from 34 class categories. 3D-FRONT has 18,968
3D indoor scenes furnished with 3D-FUTURE objects. We
obtain 3 million 3D crops of sizes 2.7m and 5.4m to
train our VQ-VAE and diffusion models (voxel size 4.2cm).
After filtering out empty or near-empty scenes, we use a
train/test split of 6000/250.

We obtain two types of captions for scene chunks, where
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Figure 5. Qualitative comparisons to state-of-the-art diffusion-based 3D scene generative approaches BlockFusion [70], and SDFusion [11].
Our approach produces improved scene geometry and more cohesive global scene structure with consistent walls compared to baselines.
*Note that results for BlockFusion are generated unconditionally.

the first set of captions is automatically generated from the
3D-FRONT object annotations in a template-based fash-
ion, and the second set is refined from the first using
Qwen1.5 [62]. For further information about data process-
ing and caption generation, we refer to the supplemental.

Implementation Details. Our method is trained with
an Adam [33] optimizer with learning rates 1e-4 and 2e-
4 for the semantic and geometric VQ-VAEs. We use
AdamW [39] with a learning rate 1e-5 for both semantic and
geometric latent diffusion models. The semantic and geo-
metric VQ-VAEs are trained on 2 NVIDIA A6000s each for
320k and 160k iterations (∼ 50 hours) until convergence.
The diffusion models are trained on 2 NVIDIA A100s each
for 400k iterations (∼ 100 and 150 hours, respectively).

4.2. Evaluation Metrics

We assess both generation and editing quality, in terms of
geometric fidelity and adherence to text and editing inputs,
evaluated for both individually generated chunks and crops
of outpainted 3D scenes.

Geometric quality. We evaluate synthesized 3D scene
geometry, following established evaluation metrics [70, 74],
which do not take input conditions into account. Specifi-

Method Independent chunks Scene chunks

MMD ↓ COV ↑ 1-NNA (0.5) MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

NFD [56] 0.023 0.230 0.396 0.312 0.775 0.839 - - - - - -
PVD [82] 0.021 0.221 0.367 0.220 0.778 0.867 - - - - - -
SDFusion [11] 0.034 0.246 0.291 0.269 0.847 0.890 0.031 0.245 0.282 0.283 0.882 0.897
BlockFusion* [70] 0.048 0.305 0.177 0.110 0.953 0.986 0.054 0.330 0.186 0.091 0.961 0.993

Ours 0.019 0.140 0.421 0.316 0.738 0.512 0.021 0.147 0.410 0.321 0.783 0.458

Table 1. Geometric quality of synthesized 3D scene geometry as
independent chunks (left) and as chunks of outpainted 3D scenes
(right). SceneFactor generates scenes more reflective of ground-
truth geometric distributions. *Note that BlockFusion results are
generated unconditionally.

Target (Tr) Distractor (Dis) P(Tr) P(Dis) P(conf.) P(Dis=GT) - P(Tr) ↓
Ours SDFusion [11] 58% 42% 25% -
Ours Text2Room [28] 65% 35% 32% -

SDFusion [11] GT 33% 67% 25% 34%
Text2Room [28] GT 38% 62% 31% 24%

Ours GT 42% 58% 33% 16%

Table 2. Quality of text-guided generation using a pretrained neu-
ral listener model. Our results are preferred over that of SDFu-
sion [11], and Text2Room [28], both in direct comparison as well
as relative to ground truth.

Method Independent chunks Scene chunks

NFD [56] 26.59 26.59
PVD [82] 24.79 24.79
SDFusion [11] 28.01 27.70

Ours 29.81 29.40

Table 3. CLIP-Score evaluation of text-guided generation. Ren-
dered views of chunks generated by our method better match text
captions.

cally, we use Minimum Matching Distance (MMD), Cov-
erage (COV), and 1-Nearest-Neighbor-Accuracy (1-NNA).
For MMD, lower is better; for COV, higher is better; for
1-NNA, 50% is the optimal. We use a Chamfer Distance
(CD) distance measure for computing these metrics in 3D.
Further details can be found in the supplementary.

Consistency of synthesized geometry with text inputs.
To evaluate how well synthesized geometry corresponds to
input text queries, we follow the evaluation proposed by
ShapeGlot [1]. A neural evaluator is trained to distinguish
the target and distracting chunks, given the text description.

We also evaluate using CLIP [50] score, which reflects
the consistency of generated geometry to text inputs in
CLIP space. We render each chunk from 5 views (1 top,
4 side views). Since individual views may contain occluded
objects, we evaluate the max CLIP score.

We also include a perceptual study in the supplemental.
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Method Independent chunks Scene chunks

MMD ↓ COV ↑ 1-NNA (0.5) MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

w/o sem stage 0.022 0.146 0.405 0.295 0.757 0.482 0.026 0.231 0.409 0.299 0.785 0.895
w/o conv attn 0.020 0.161 0.433 0.312 0.752 0.514 0.024 0.233 0.410 0.347 0.869 0.896
w/o 3D latent 0.029 0.248 0.321 0.276 0.931 0.951 0.025 0.237 0.383 0.335 0.915 0.496

Ours 0.019 0.140 0.421 0.316 0.738 0.512 0.021 0.147 0.410 0.321 0.783 0.458

Table 4. Ablations. Our semantic proxy representation, 3D atten-
tion conditioning, and use of 3D latent spaces for semantics and
geometry significantly improve generated scene quality.

4.3. Comparison with State of the Art

We compare with several state-of-the-art 3D diffusion-
based generative methods leveraging various geometry rep-
resentations: PVD [82] generates points, NFD [56] learns a
latent triplane diffusion model, SDFusion [11] leverages a
scalable latent grid representation for text-conditioned gen-
eration, Text2Room [28] employs RGB image synthesis to
fuse observations into a scene mesh, and BlockFusion [70]
uses a latent triplane diffusion model to generate large-scale
scenes. We extend PVD and NFD approaches using the
same BERT-based text encoding as SDFusion and ours. We
apply our scene outpainting strategy for PVD, NFD, and
SDFusion, but find empirically that it fails to generate co-
herent scenes for PVD and NFD, so we visualize SDFusion;
BlockFusion is designed to produce large-scale scenes us-
ing triplane outpainting.

Tab. 1 shows a quantitative evaluation of the geomet-
ric quality of generated chunks as well as chunks sampled
from generated scenes for models trained with synthetically
generated captions. Our factored approach produces con-
sistently improved geometry in comparison with baselines.
PVD [82] does not decouple geometric compression and
diffusion training and, using a limited number of points,
which makes it unable to produce fine geometric details of
scene chunks. NFD [56] struggles with the complex, di-
verse, non-canonicalized scene data. In addition, SDFu-
sion [11] and BlockFusion [70] perform worse due to the
lack of an intermediary spatially-structured condition.

This can also be seen in the qualitative results in Fig. 5.
BlockFusion uses latent triplanes to outpaint scenes; how-
ever, the triplanes can produce misshapen objects, espe-
cially those intersecting with outpainting seams. Note
that following the authors’ suggestions for comparisons
with BlockFusion, the results are generated unconditionally
without text input, in contrast to SDFusion and our method.

Tabs. 2 and 3 evaluate the consistency of generated ge-
ometry to the input text, showing that our factored approach
better adheres to input text prompts.

In contrast to state-of-the-art 3D generative methods,
SceneFactor enables localized editing of generated 3D
scenes, as shown in Fig. 4, maintaining scene consistency
while manipulating geometry-based on easy box manipula-
tions in the semantic domain. We include further compar-
isons and visualizations in the supplemental.

4.4. Ablation Studies

What is the impact of using a proxy semantic map for
3D scene generation? This helps to disentangle 3D scene
generation into coarse object arrangement and refined geo-
metric synthesis. Tab. 4 shows that performance improves
with a proxy semantic generation, which helps to avoid gen-
erating floaters and incoherent object geometry or arrange-
ments, since the semantic map provides guidance for object
type and extent.

What is the effect of convolutional attention for geomet-
ric diffusion? Tab. 4 shows that attention with convolutions
to extract queries, keys and values instead of linear layers
and to interpret the semantic map enables far more accu-
rate geometric synthesis than MLP-based attention, which
tends to generate oversmoothed results. Convolutions with
nontrivial window sizes enable better handling of correla-
tions between a latent grid and condition due to encoding
neighborhood information.

What is the impact of 3D latent grids for diffusion? We
show in Tab. 4 that using a 3D latent space for semantic map
generation and geometric synthesis significantly improves
generation over a 1D latent space. In contrast to a 1D latent
space, a 3D latent space maintains spatial correlations to the
semantic structure of the scene, producing more effective
output scene geometry.

Limitations. SceneFactor offers a first step towards text-
guided controllable 3D indoor scene generation, though var-
ious limitations remain. For instance, while input text to our
method is flexibly encoded, we train our 3D semantic lay-
outs on closed vocabulary data, which can limit generation
diversity of generated object types. Additionally, since we
train on chunks and generate scenes by outpainting, room
boundaries can be more difficult to control based on text
input, instead requiring editing of the semantic map.

5. Conclusion

We have introduced SceneFactor, a new factored latent dif-
fusion approach for controllable, editable 3D scene gener-
ation. By disentangling the complex 3D scene generation
task into first creating a coarse, high-level structural seman-
tic, followed by finer-grained geometric refinement, Scene-
Factor enables both effective text-guided 3D scene synthe-
sis of large-scale scenes, and moreover, synthesis of ed-
itable 3D scene representations. Our coarse semantic map
is structured as semantic boxes, enabling user-friendly box
manipulation that can be used for various localized edit-
ing (object addition, removal, replacement, moving, alter-
ing size) of the generated 3D scenes. We believe this rep-
resents an important step towards artist-driven automated
3D content creation, through the formulation of editable 3D
scene generation for content creation scenarios.
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SceneFactor: Factored Latent 3D Diffusion for Controllable
3D Scene Generation

Supplementary Material

In this supplemental material, we provide details of
data processing and caption generation in Section 6, show
the additional qualitative and quantitative comparison to
diffusion- and non-diffusion-based methods in Section 7,
provide details of the evaluation metrics and the perceptual
study in Section 8 and additional implementation details in
Section 9.

6. Data Processing
Geometry. To make 3D-FRONT [21] data suitable for
training and testing, we first combine 3D furniture and
3D scene meshes using 3D-FRONT annotation. 3D-
FUTURE [22] models are preliminarily converted into
high-quality watertight meshes using the Manifold [29] ap-
proach. This method can create meshes with double sur-
faces, so we remove all closed surfaces that lie within a
mesh interior. To obtain the unsigned distance field of 3D-
FRONT scenes with a resolution of 4.2 cm, we apply the
virtual scanning tool mesh2sdf [66]. Preliminarily, we re-
move the ceiling from all 3D-FRONT scenes. In addition
to the distance field, we regularly sample points with cor-

responding semantic labels belonging to scene layouts and
furniture objects to form a semantic map of a scene with
a resolution of 16.8 cm. The training chunks are obtained
by randomly cropping from scene distance fields and se-
mantic maps. We convert all test scenes into a test-suitable
format by cutting the scenes into a regular grid of overlap-
ping geometric and semantic chunks. All scene chunks are
normalized to be centered at the origin and scaled to a unit
cube.

Captions. To obtain captions for scene chunks, we use
the 3D-FRONT object annotations to automatically gener-
ate seven types of captions. These caption types include de-
scriptions with object counts or object lists without counts,
subcategory information, and spatial relationships between
objects. First, every scene annotation includes object in-
stances of 8 categories depicted in Fig. 4. For every chunk,
we add names of object categories into a caption if at least
35% of an object lies within a chunk. Here, we have two
types of text captions: explicit lists of single objects as cat-
egory names and aggregated lists where repeated objects
are counted. Another caption type can be obtained from

Figure 6. Qualitative comparison with state of the art on text-guided scene chunk generation using Qwen1.5 captions. In comparison with
PVD [82], NFD [56], SDFusion [11], and BlockFusion [70] SceneFactor generates higher-fidelity, more coherent scene structures through
our factored approach.
*Note that results for BlockFusion are generated unconditionally
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Figure 7. Additional qualitative scene editing results. Generated scenes and their corresponding semantic maps are shown in the top row,
and two alternatives for each object synthesis-based edit are shown below.

the latter by adding spatial relationships between objects in
a chunk. Second, using simple proximity checks based on
Euclidean L2 distance between object centers or object cen-
ters and wall points, we can identify if two or more objects
form a group, stand across from each other, or stand next to
a wall. For every caption, we also identify if there are walls
along the borders of chunks. These three types of captions
can be augmented using 33 subcategory names from 3D-
FRONT annotation instead of category names. Finally, we
have an extra room type caption, where for every chunk, we
add room names from 3D-FRONT annotation to a caption
if at least 25% of a room lies in a chunk.

LLM-Refined Captions. Finally, we train additional
instances of SceneFactor, SDFusion [11], NFD [56],
PVD [82] with the second set of captions – com-
plex, natural text inputs. We utilize the large-language
model Qwen1.5 [62] to refine our synthetic-looking
captions using the following query: Reformulate
the following synthetic description of
a 3D scene into a human-readable but
concise, extremely minimalistic, and
non-list format in only one sentence:
<caption>, where <caption> is the caption before
LLM refinement.

Augmentations. During the training of the geometric and

semantic VQ-VAE autoencoders and diffusion models, ran-
dom 90◦-fold rotation and symmetric reflection across xz-
or yz-plane augmentations are applied to all train scene
chunks and input latent representations.

7. Additional Results

Additional Comparison to Diffusion-based Methods.
Fig. 6, 11 and 12 show additional qualitative compar-
isons with state-of-the-art baselines on scene chunk gener-
ation using synthetic and Qwen-refined captions. PVD [82]
model uses explicit point cloud diffusion, which makes it
significantly harder to generate clean and complete scenes.
NFD [56] produces much cleaner scene layouts due to its
signed distance field prediction. However, objects tend
to lack details, with various low-level geometric artifacts
due to the lack of structured latent space for generation.
SDFusion [11] can generate more recognizable furniture.
Nonetheless, due to direct text-to-geometry prediction and
the absence of convolutional attention, SDFusion tends to
generate more incoherent global structures (e.g., objects
penetrating each other and inconsistent walls). Finally,
BlockFusion [70] unconditional generations contain incon-
sistent wall structures, and triplane-based generation is un-
able to produce accurate furniture objects in arbitrary chunk

2



locations. In Tab. 9, 10, we provide the quantitative evalu-
ation of our method and baseline approaches for the geo-
metric quality and text-guided generation using Qwen1.5
captions as input.

Figs. 9 and 10 show additional qualitative comparisons
for 3D scene generation with SDFusion [11] and Block-
Fusion [70]. SDFusion tends to produce more noticeable
transitions between generated chunks, along with floating
geometric artifacts and holes in furniture objects. Both SD-
Fusion and BlockFusion generate significant artifacts, such
as holes in the floor, due to the lack of conditioning on spa-
tial information. BlockFusion struggles to outpaint objects
from one chunk to the next chunk, which results in a signif-
icantly unnatural appearance of the generated room spaces.

Finally, we provide additional qualitative scene editing
results for our method in Fig. 7. Our approach is able to
produce diverse and consistent editing results for the same
input scene.

Comparison to Non-diffusion-based Methods. In addi-
tion, we provide a comparison to 2D diffusion lifting-based
approach Text2Room [28] and a retrieval-based method
ATISS [46], for which we evaluate only independent chunks
generation since these models are not applicable for large-
scale scene generation.

Tab. 6 quantitatively evaluates the geometric qual-
ity of generated chunks against ATISS and Text2Room.
Text2Room [28] takes significant time to generate one
chunk (∼ 3.5 hours); therefore, we limited the evaluation
of this approach to 92 chunks. Our factored approach pro-
duces consistently improved geometry in comparison with
these baselines. In Tab. 7, we also show that our approach

significantly outperforms Text2Room by the CLIP score
between rendered chunks and input text captions. We do
not evaluate against the retrieval-based ATISS method be-
cause the CLIP score is biased towards non-generated but
retrieved synthetic meshes placed on top of the floor. We
found this comparison not meaningful. Instead, we evalu-
ate our approach against ATISS using a pretrained neural
listener model for the input text correspondence in Tab. 8.
A neural evaluator is trained to distinguish the target chunk
from a distracting chunk, given the text description. Given
two chunks from different methods or one chunk from a
method and another chunk from a GT set, the neural eval-
uator provides a confidence score for each of them based
on the binary classification logits. If the absolute difference
between two confidence scores ≤ 0.2, we consider the com-
parison to be confused. ATISS is not able to handle a large
diversity of text captions and is significantly inferior to our
approach in terms of text coherence.

Additional Semantic Evaluation. We provide additional
analysis of our first-stage semantic map generation model,
where the original latent diffusion model and the diffu-
sion model explicitly trained with one-hot semantic maps
are compared to each other. We first compute the average
chunk semantic accuracy with respect to text input, where
for every object class category mentioned in a caption, we
check if the corresponding object has been predicted. For
this metric, the latent-based model has accuracy of 91%
against 83% for the model without latent representation. In
Tab. 5, we provide further evaluation, which is based on
MMD/COV/1-NNA metrics.

Figure 8. Perceptual study of the quality of text-guided 3D indoor scene generation and editing. (a) Unary study on perceptual geometric
quality and text consistency for generated chunks and scenes. (b) Unary study on editing quality and scene consistency for SceneFactor.
(c) Binary study between SceneFactor and baselines on text consistency between captions and generated chunks. (d) Binary study between
SceneFactor and baselines on perceptual geometric quality of generated chunks. (e) Unary study of SceneFactor for locality of edits.
*Note that results for BlockFusion are generated unconditionally
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8. Baseline Evaluation Setup
Metrics. Following the works for 3D shape generation, we
use the following metrics on point clouds extracted from
mesh surfaces:

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y ),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y )|X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1X +
∑

Y ∈Sr
1Y

|Sg|+|Sr|
,

1X = 1[NX ∈ Sg], 1Y = 1[NY ∈ Sr],

where Sr and Sg are reference and generated sets of point
clouds extracted from ground-truth and generated mesh sur-
faces, respectively, NX is a point cloud that is closest to
X in both generated and reference dataset, i.e., NX =
argminK∈Sr∪Sg

D(X,K). We use Chamfer distance (CD)
and Earth-mover distance (EMD) as D(X,Y ) to compute
these metrics in 3D. To evaluate these metrics, we extract
4096 points from ground-truth and generated mesh surfaces
or sample 4096 points from PVD point clouds.

We utilize the official implementations of NFD [56],
PVD [82], SDFusion [11], BlockFusion [70],
Text2Room [28], and ATISS [46]. For NFD and PVD, we
do not implement the same or similar scene-aware gener-
ation mechanism, which inpaints missing chunks because
PVD leverages the explicit point cloud representation in
the diffusion model, and NFD demonstrates extremely
poor results when using an inpaiting mechanism resulting
in empty chunks which degrade in quality along the gen-
eration sequence. Text2Room and ATISS approaches are
also inapplicable for large-scale scene generation using the
outpainting mechanism. We use the same context encoding
for text captions as in SceneFactor and SDFusion for NFD
and PVD, while Text2Room, ATISS, and BlockFusion are
designed to take text as input.

To evaluate geometric quality in Tab. 1, we normalize the
ground-truth and predicted chunk meshes or point clouds
into a unit cube and extract 4096 points from mesh surface
or point cloud.

For the text-aware evaluation in Tab. 2, we train the neu-
ral listener model consisting of geometric encoder, text em-
bedded, and language encoder. Geometric encoder con-
sists of 5 ResNet blocks with GeLU activations and 2 linear
layers with ReLU activations and takes uDF of geometric
chunks as input. The input text is encoded using the same

text encoder as in SceneFactor, but with an embedding di-
mension of 128. The text features are then processed using
the LSTM [27] network. The resulting features are concate-
nated with geometric features and finally processed with a
shallow MLP network with ReLU activations.

For the CLIP score evaluation in Tab. 3, we render 4
views of predicted meshes or point clouds and compute the
cosine distance to text caption used for generation. We add
a prefix ’a render of a 3D scene with ’ to captions for CLIP
score evaluation for ones not generated with Qwen1.5 [62]
model.

Perceptual Study. To more effectively capture the percep-
tual quality of synthesized geometry, as well as adherence
to text and editing inputs, we perform a perceptual study.
We ask users to evaluate perceptual geometric quality as
well as adherence to the text prompts, both as unary evalu-
ation scores and binary comparisons between SceneFactor
and each baseline. Perceptual geometric quality is assessed
on a scale from 1 (Awful quality) to 5 (Great quality). Ad-
herence to text input is assessed on a scale from 1 (Not
matching) to 5 (Matching).

In particular, since we lack ground truth editing results as
well as baselines that perform local spatial edits, we evalu-
ate our editing performance through unary evaluation in the
perceptual study. Editing results in the perceptual study are
generated randomly across each possible editing operation.
We ask users to assess (1) if the resulting edited scene is
consistent with the given edit operation using a scale from 1
to 5; (2) the perceptual geometric quality of an edited scene
using a scale from 1 to 5; and (3) if a scene remained un-
changed outside of the editing region as either 1 (Yes) or 2
(No). In total, 21 participants took part in a perceptual study
consisting of 53 questions per user. We provide the quanti-
tative results of the conducted perceptual study in Fig. 8.

We developed a Django-based web application for the
perceptual study. In total, we have 5 sections for our sur-
vey. For the first part, an unary study on perceptual ge-
ometric quality and text consistency for generated chunks
and scenes, there are 25 questions and 5 randomly chosen
scenes and chunks for every approach. Here, the user is
asked to provide a score from 1 to 5 based on the percep-
tual geometric quality of chunks and the consistency of gen-
eration to an input text caption. In addition to chunkwise
comparison, for SDFusion, BlockFusion, and our approach,
there is also a unary study on scenes, where users are asked
to evaluate the geometric quality of the whole scene. For
SDFusion and ours, users are asked to evaluate the consis-
tency of one scene chunk to a text caption.

9. Implementation Details

Our method is implemented using PyTorch. Semantic and
geometric VQ-VAE models are trained with an Adam [33]
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Method Independent chunks

MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD

w/o latent 0.263 0.473 0.335 0.344 0.784 0.784

Ours 0.222 0.458 0.495 0.491 0.598 0.631

Table 5. Semantic quality of synthesized 3D scene geometry as
independent chunks.

optimizer with learning rates 1e-4 and 2e-4 for the seman-
tic and geometric VQ-VAEs. We use AdamW [39] with a
learning rate of 1e-5 for both semantic and geometric latent
diffusion models. The semantic and geometric VQ-VAEs
are trained on 2 NVIDIA A6000s each for 320k and 160k
iterations (∼ 50 hours) until convergence. The diffusion
models are trained on 2 NVIDIA A100s each for 400k iter-
ations (∼ 100 and 150 hours, respectively).

VQ-VAE semantic and geometric models comprise 3
ResNet blocks in the encoder and 3 ResNet blocks in the de-
coder with bilinear upsampling layers and GeLU [24] non-
linearities. For the semantic VQ-VAE latent space, we en-
code semantic chunks into (1, 4, 4, 4) latent grids, with only
1 feature channel using a dictionary size of 8192. Geomet-
ric chunks are encoded using the geometric VQ-VAE model
into (1, 16, 16, 16) latent grids, with 1 feature channel using
a dictionary size of 32768.

The semantic diffusion model is trained using larger la-
tent grids of size (1, 8, 4, 8) that correspond to two twice
bigger semantic chunks in both horizontal dimensions. We
pad these grids with zeros to the shape of (1, 8, 8, 8) to en-
able compression using 4 ResNet blocks in the encoder of
the UNet model. The first 3 ResNet blocks combine convo-
lutional operations with attention layers with 8 heads. To
encode the context, we use the transformer-based model
with BERT tokenizer and context dimension of 1280 and
77 maximum number of tokens.

Analogously, the geometric diffusion model is trained
using larger latent grids of size (1, 32, 16, 32) that corre-
spond to two twice bigger geometric chunks in both hori-
zontal dimensions. The UNet model encoder consists of 3
ResNet blocks with attention layers with 8 heads in each
block. To encode the semantic context, we first encode
the input semantic chunk of size (1, 32, 16, 32) into one-hot
representation with 10 class channels. This one-hot rep-
resentation is encoded into a context feature grid of size
(128, 16, 8, 16) using the fully convolutional network with
LeakyReLU activations [71].

Method Independent chunks

MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD

Text2Room 0.048 0.316 0.021 0.021 0.997 0.993
ATISS [46] 0.050 0.327 0.117 0.117 0.993 0.992

Ours 0.019 0.140 0.421 0.316 0.738 0.512

Table 6. Geometric quality of synthesized 3D scene geometry as
independent chunks (left) and as chunks of outpainted 3D scenes
(right).

Method Independent chunks Scene chunks

Text2Room [28] 24.11 24.11
Ours 29.81 29.40

Table 7. CLIP-Score evaluation of text-guided generation. Ren-
dered views of chunks generated by our method better match text
captions.

Target (Tr) Distractor (Dis) P(Tr) P(Dis) P(conf.) P(Dis=GT) - P(Tr) ↓
Ours ATISS [46] 66% 34% 21% -

ATISS [46] GT 33% 67% 22% 34%
Ours GT 42% 58% 33% 16%

Table 8. Quality of text-guided generation using a pretrained neu-
ral listener model. Our results are preferred over that of SDFu-
sion [11], ATISS [46], and Text2Room [28], both in direct com-
parison as well as relative to ground truth.

Method Independent chunks Scene chunks

MMD ↓ COV ↑ 1-NNA (0.5) MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

NFD [56] 0.023 0.225 0.411 0.335 0.744 0.814 - - - - - -
PVD [82] 0.021 0.221 0.396 0.285 0.729 0.876 - - - - - -
SDFusion [11] 0.031 0.240 0.331 0.277 0.835 0.898 0.035 0.253 0.313 0.265 0.874 0.910
BlockFusion* [70] 0.048 0.305 0.177 0.110 0.953 0.986 0.054 0.330 0.186 0.091 0.961 0.993

Ours 0.021 0.165 0.399 0.300 0.772 0.769 0.026 0.249 0.365 0.270 0.839 0.910

Table 9. Geometric quality of synthesized 3D scene geometry as
independent chunks (left) and as chunks of outpainted 3D scenes
(right) generated with Qwen1.5 captions.

Method Independent chunks Scene chunks

NFD [56] 21.61 21.61
PVD [82] 20.32 20.32
SDFusion [11] 23.08 23.17

Ours 23.96 23.79

Table 10. CLIP-Score evaluation of text-guided generation using
Qwen1.5 captions. Rendered views of chunks generated by our
method better match text captions.
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Figure 9. Additional qualitative comparisons for scene generation in comparison with SDFusion [11] and BlockFusion [70].
*Note that results for BlockFusion are generated unconditionally
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Figure 10. Additional qualitative comparisons for scene generation in comparison with SDFusion [11] and BlockFusion [70].
*Note that results for BlockFusion are generated unconditionally
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Figure 11. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [82], NFD [56], SD-
Fusion [11], and BlockFusion [70] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally
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Figure 12. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [82], NFD [56], SD-
Fusion [11], and BlockFusion [70] using synthetic captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally
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