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Figure 1: From an input RGB-D scan (left), we propose to detect objects in the scan and predict their complete part
decompositions as semantic part completion; that is, we predict the part masks for the complete object, inferring the part
geometry of any missing or unobserved regions in the scan. To achieve this, we predict the part structure of each detected
object to drive a geometric prior-driven prediction of the complete part masks.

Abstract

Recent advances in 3D semantic scene understanding
have shown impressive progress in 3D instance segmenta-
tion, enabling object-level reasoning about 3D scenes; how-
ever, a finer-grained understanding is required to enable
interactions with objects and their functional understanding.
Thus, we propose the task of part-based scene understand-
ing of real-world 3D environments: from an RGB-D scan
of a scene, we detect objects, and for each object predict
its decomposition into geometric part masks, which com-
posed together form the complete geometry of the observed
object. We leverage an intermediary part graph represen-
tation to enable robust completion as well as building of
part priors, which we use to construct the final part mask
predictions. Our experiments demonstrate that guiding part
understanding through part graph to part prior-based pre-
dictions significantly outperforms alternative approaches to
the task of semantic part completion.

1. Introduction

Recently, we have seen remarkable advances in 3D se-
mantic scene understanding, driven by efforts in large-scale
data collection and annotation of 3D reconstructions of RGB-
D scanned environments [5, 2], coupled with exploration of
3D deep learning approaches across 3D representations such
as sparse or dense volumetric grids [56, 39, 5, 15, 4], point
clouds [38, 40], meshes [13, 23], and multi-view [7, 50].
This has led to significant progress in both 3D semantic
segmentation as well as 3D semantic instance segmentation
[16, 15, 4, 25]. These have enabled a basis for 3D percep-
tion at the level of objects, which is essential for semantic
understanding, but lacks finer-grained understanding often
critical for enabling interactions with objects and reasoning
about functionality (e.g., the seat part of a chair is for sitting
on, a knob or handle enables opening doors or drawers).

At the same time, notable progress has been made in
part segmentation for shapes [33, 32, 18]. However, these
methods have been developed on synthetic datasets such
as ShapeNet [3], of objects in isolation; this scenario is



much less complex than the objects observed in real-world
environments. Thus, we aim to bring these two directions
together and propose the task of semantic part completion,
predicting the part decomposition of objects in real-world
3D environments, where observations are often cluttered and
geometrically incomplete (e.g., due to occlusions, sensor
limitations, etc). That is, from an RGB-D scan of a scene,
we detect objects characterized by 3D bounding boxes and
class labels, and for each object, we predict its complete
part decomposition into binary part masks, with each part
mask reflecting the part geometry of the complete object,
including unobserved missing regions, to achieve a holistic
understanding of the objects in an observed scene.

To achieve this part-based understanding of a scene, we
propose to predict the full part graph for each detected object,
and based on the predicted part graph, the geometric masks
for each complete part. Predicting the part graph structure
enables capturing the complete semantic structure of the
object in a low-dimensional representation, allowing reliable
prediction of missing and unobserved parts (e.g., for a four-
legged table with one leg unobserved, the missing leg is easy
to predict based on commonly observed table part patterns).
Furthermore, this enables us to build and exploit strong part
geometry priors for each predicted part in the part graph. We
can then predict the part masks by finding similar part priors
and refining them to produce final part mask predictions.
This enables a robust decomposition of an RGB-D scan of a
scene into its component objects and their constituent parts,
including regions of objects that have been unobserved. We
believe that this takes an important step towards enabling
local interactions with objects and functionality analysis in
real-world 3D scenes.

We formulate the task of semantic part completion for 3D
scene understanding, informing comprehensive part-based
object understanding of real-world scans. To address this part
understanding, we propose an approach to decompose a 3D
scan of a scene into its complete object parts, outperforming
state-of-the-art alternative approaches for the task:

• We propose to predict part graph information for ob-
jects in real-world scan scenes as an intermediary rep-
resentation that enables robust, part-based completion
of objects.

• We leverage the predicted part graphs to guide prior-
based prediction for effective inference of geometric
part mask decomposition for the objects of a scanned
scene.

2. Related Work
3D Object Detection and Instance Segmentation. Fol-
lowing the success of convolutional neural networks for
object detection and instance segmentation in 2D im-
ages [12, 42, 41, 19], we are now seeing notable advances in

3D object localization and segmentation. Earlier approaches
leveraging 3D convolutional neural networks developed
methods operating on dense voxel grids using 3D region
proposal techniques for detection and segmentation [47, 20].
Sparse volumetric backbones have also been leveraged to
enable effective feature extraction on high-resolution in-
puts for improved 3D detection and segmentation perfor-
mance [10, 16]. Recently, VoteNet [37] introduced a Hough
Voting-inspired scheme for 3D object detection on point
clouds. This was extended by MLCVNet [57] to incorporate
multi-scale contextual information for improved detection
performance. These approaches have now shown impressive
performance for instance-level scene understanding; we aim
to build upon this and propose to infer finer-grained part
decomposition for each object in a 3D scan.

3D Scan Completion. Repairing and completing holes or
broken meshes has been well-studied for 3D shapes. Tra-
ditional methods have mainly focused on repairing small
holes by fitting geometric primitives, continuous energy min-
imization, or leveraging surface reconstruction for interpo-
lation of missing regions [34, 60, 49, 27, 28]. Structural or
symmetry priors have also been leveraged for shape comple-
tion [53, 31, 36, 46, 49]. Recently, generative deep learning
approaches have been developed, with significant progress
in 3D shape reconstruction and completion [56, 9, 17, 35].

In addition to operating on the limited spatial context of
shapes, generative deep learning approaches have also been
developed for completion of 3D scenes. Song et al. [48]
developed a voxel-based approach to predict geometric occu-
pancy of a single depth frame, leveraging a large-scale syn-
thetic 3D dataset of scenes. Dai et al. [8] proposed an autore-
gressive approach for scan completion, enabling very large
scale completion. SG-NN [6] presented a self-supervised
approach towards 3D scan completion, enabling training
only on real scan data. These approaches operate on geomet-
ric completion but without knowledge of individual object
instances, which is fundamental to many perception-based
tasks. RevealNet [21] introduced an approach to detect ob-
jects in a 3D scan and infer each object’s complete geometry,
joining together geometric reconstruction with object-based
understanding. We similarly aim to infer each object’s com-
plete geometry from a partial scan observation, but infer a
part decomposition of the object structure, enabling both
finer-grained understanding as well as more effective object
completion through its part structure.

Part Segmentation of 3D Shapes. Understanding the
structure of a 3D shape by identifying shape parts has
been long-studied in shape analysis. Various approaches
have been developed for finding a consistent segmentation
across a set of shapes without supervision of part labels
[14, 24, 45, 22]. Recently, deep learning based approaches



Figure 2: Overview of our approach. From an input scan, we detect objects as their 3D bounding boxes, and for each object (a
chair and a trash can visualized top and bottom, respectively), we predict their semantic part structure, which is then used to
guide a geometric prior-based part mask prediction. This results in a part decomposition of the scene where each object is
decomposed into its complete part geometry, including any missing or unobserved regions.

have been developed to find part segmentation of shapes
in a data-driven fashion [26, 59, 18]. To better capture
more complex structures in the part layout of shapes, sev-
eral methods propose to parse object parts as hierarchies
[55, 54, 58, 33, 32]. Such hierarchically structured repre-
sentations have also been adopted for 3D scene synthesis,
leveraging a scene graph [11, 61, 30], where object instances
rather than parts form the node primitives. We also adopt
a relational inference of parts, but aim to operate on noisy,
incomplete real-world scans of scenes with multiple objects,
and so propose to combine our hierarchical part decomposi-
tion with strong geometric part priors.

3. Method

3.1. Overview

We address the problem of simultaneous part segmenta-
tion and completion of objects of real-world RGB-D scans,
which are often noisy and incomplete. An overview of our
approach is illustrated on Fig. 2. Given an input 3D scan S,
we aim to predict a set of parts for each object in the scan,
with each part representing the complete geometry of the
part, including any missing or unobserved regions. From
S, we first detect a set of object instances O = {oi} in the
scene, as 3D bounding box locations and class category pre-
dictions. For each detected object in O, we then convert it
into a 323 occupancy grid representation, to inform our part
segmentation and completion.

We then predict the part segmentation and completion for
each detected object oi ∈ O, resulting in a set of volumetric
binary part masks. First, for a detected object oi, we predict

its semantic part structure Ti, with elements representing
part class types, and the adjacency relations between the
parts. This enables encoding the high-level, semantic part
structure of the shape, which both facilitates completion of
the shape structure, as missing parts are easy to identify in
their semantic part structure, as well as guides the prediction
of the geometry of each part. In particular, this allows us to
leverage geometric part priors built for each part category.
We construct the part priors based on clustering of train part
masks for each part category, and learn to predict similar
priors for each leaf in our predicted Ti, followed by a refine-
ment of these priors to predict the final part mask geometry.
This produces a semantic part decomposition of objects in a
3D scan while simultaneously inferring their complete part
geometry.

3.2. Object Detection

From an input 3D scan, we first detect objects in the scene.
We leverage a state-of-the-art 3D object detection approach,
MLCVNet [57], as our object detection backbone. The in-
put scan sampled to a point cloud, and object proposals are
produced by voting [37], leveraging global contextual infor-
mation at various scales. As output, we obtain 3D bounding
box locations for each detected object. We then resample
the input scan geometry within each detected box into 323

occupancy grids oi ∈ O to inform our part decomposition.
For a detected object oi from the scan, represented as

a 323 occupancy grid of the scan geometry within its pre-
dicted bounding box, we encode the occupancy grid with
four 3D convolutional blocks (consisting of convolution,
group normalization and ReLU activation) and extract a fea-



ture encoding zi of dimension 128, which is used to inform
the part decomposition.

Object Orientation Prediction Since our object detec-
tion backbone predicts axis-aligned bounding boxes for each
object, we additionally predict the orientation ri of each
object oi from its feature zi using an MLP. We assume that
the up (gravity) vector is known in the scene, and thus pre-
dict the angle around the up vector by classifying the angle
in nα = 8 bins of discretized angles ({0◦, 45◦, . . . , 315◦})
with a cross entropy loss. The predicted object orientation
helps to guide our prior-based part decomposition as de-
scribed in Section 3.4.

3.3. Semantic Part Decomposition

For a detected object oi from the scan, represented as a
323 occupancy grid of the scan geometry within its predicted
bounding box, we aim to capture its high-level part structure
from its cluttered and partial observation. We predict the
semantic part structure Ti of the object; this facilitates com-
pletion of the object by predicting its high-level structure, as
well as enables our prior-guided part geometry prediction.

We first encode the occupancy grid of oi with four 3D con-
volutional blocks (consisting of convolution, group normal-
ization and ReLU activation), and extract a feature encoding
zi of dimension 128. We then decode zi into a semantic part
prediction, constructing a part set Ti with each element repre-
sented by its predicted part category and a 128-dimensional
feature encoding. Inspired by StructureNet [32], we leverage
a message-passing graph neural network for our semantic
part prediction which enables relational inference between
semantic parts. From zi, we predict part elements using an
MLP to predict nparts = 10 latent vectors {z′k} that corre-
spond to potential parts of o. We additionally predict a tuple
tk = (ek, sk) for every part z′k, where ek is the probability
of part existence, sk is the one-hot representation of the part
category label. For each pair (z′i, z

′
j) of parts, we predict if

they are adjacent or not, enforcing structural features to be
learned by the message-passing network. We employ a cross
entropy loss for the part category label, and binary cross
entropy losses for part existence and adjacency relationships.
This produces a high-level part summary of oi, where nodes
{z′k} represent part semantic information of the complete
structure of oi, even if oi has been partially observed. Note
that this semantic part decomposition can be extended hi-
erarchically to predict a full part tree, though we consider
the first level children for our semantic part structure. We
leverage this part semantic information to guide our final
part decomposition as geometric part masks.

3.4. Prior-guided Geometric Part Decomposition

We then predict the final part decomposition by generat-
ing part masks for each element in the predicted semantic

Figure 3: Several geometric part priors for part types be-
longing to the ‘chair’ and ‘bed’ class categories. Each part
prior represents a cluster of train parts, visualized at three
different isolevels.

part arrangement Ti, where each mask represents the com-
plete geometry associated with the part, including regions
that were unobserved in the initial scan observation. Rather
than directly reconstructing the part geometry of each pre-
dicted part, we observe that object parts often maintain very
similar geometry structures, which we leverage to obtain
our final part decomposition. That is, we construct geomet-
ric part priors to aid in generating our complete part mask
predictions, and learn to find similar geometric part priors
which we then refine for a final prediction.

We construct our geometric part priors by k-means clus-
tering of the binary part masks in the train set, inspired by the
ShapeMask [29] construction of priors for novel 2D object
segmentation. For each part type, we find K = 10 centroids
of the part masks, and perform the clustering on the part
masks in 323 grids of the canonical object space. This pro-
duces a set of part priors {P1, . . . , PM} withM = nclassesK.
Various resulting part priors are visualized in Figure 3. Since
objects in the real-world scan inputs may not be oriented in
the canonical orientation of the object, we use the predicted
orientation ri to transform the priors to {P r1 , . . . , P rM}.

Thus, to predict the part geometry associated for an el-
ement in the predicted semantic part set Ti with feature
encoding z′k and predicted part type t, we use a one-layer
MLP which takes as input z′k and predicts a set of weights
wm used to construct an initial part reconstruction as:

P coarse
k =

Mt∑
m=1

wmP
r
m,

where w = softmax(φ(z′k)), and φ is a linear layer. We
employ a proxy loss on this initial part reconstruction, using
a mean squared error with a target part mask.

Such prior-guided part decomposition helps to reconstruct
global structures in part masks such as symmetry and ge-
ometry in missing regions in the input observation. We



Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

SG-NN + MLCVNet + PointNet++ 0.078 0.111 0.111 0.062 0.084 0.197 0.107 0.097 2.3 3.7 0.5 2.7 4.8 0.5 2.5 2.2
SG-NN + MLCVNet + UNet 0.050 0.118 0.080 0.053 0.083 0.108 0.082 0.073 17.5 6.4 7.6 12.4 13.3 13.9 11.9 13.3
SG-NN + MLCVNet + PointGroup 0.074 0.102 0.100 0.063 0.091 0.140 0.095 0.093 5.1 1.5 1.0 4.5 4.5 0.9 2.9 2.9
MLCVNet + StructureNet 0.029 0.095 0.065 0.037 0.076 0.106 0.068 0.057 13.8 0.5 3.8 9.0 3.9 9.3 6.8 8.9

Ours 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3

Table 1: Evaluation on semantic part completion on Scan2CAD [1]. We compare with state-of-the-art approaches for scan
completion [6], followed by object detection [57], and then part segmentation [25, 32, 38]. By leveraging part structures to
guide our prior-based approach, we obtain more accurate part decompositions.

then refine the predicted P coarse
k using four 3D convolutional

blocks (consisting of convolution, batch normalization and
ReLU activation) taking as input the concatenation of the
geometry of oi and P coarse

k to produce P refine
k ; we then obtain

the final part mask prediction,

Pk = P coarse
k + P refine

k .

Empirically, we found that predicting the refinement as resid-
uals to modify the initial P coarse

k to perform better than a
direct refinement (c.f. Section 4). We then employ a binary
cross entropy loss on Pk with a target part mask. This en-
courages an improved local fit to the observed geometry that
may not have been captured in the global structure of the
geometric priors.

3.5. Training Details

Data generation. In order to train our approach, we lever-
age the Scan2CAD dataset [1] in combination with Part-
Net [33]. Scan2CAD contains annotations of CAD mod-
els from ShapeNet [3] aligned to the 3D scans of Scan-
Net [5], and we use the part annotations of PartNet for these
ShapeNet CAD models to obtain our ground truth part de-
compositions of the 3D scans. We leverage the ground truth
CAD alignments to compute our geometric part priors in
the canonically-oriented space of the objects, and use our
rotation prediction during training and inference to orient
them to the scan observations. In all our experiments we use
original ScanNet geometry with typical number of points
as 200k per scene, for MLCVNet method 40k points are
randomly sampled from each scene to train object detection.

Training. We train our part decomposition with an Adam
optimizer, using a batch size of 24, learning rate of 0.001,
and weight decay of 0.01. The learning rate is decayed every
8 epochs by a factor of 0.8. We first pre-train for 20 epochs
using ground truth 3D bounding boxes, and then fine-tune
for 10 epochs with geometry from MLCVNet detections.
MLCVNet is trained using the original proposed parameters:
using an Adam optimizer with batch size 8, learning rate
0.01, for 250 epochs.

4. Results
We evaluate our proposed approach in comparison to alter-

native approaches for semantic part completion on real-world
RGB-D scans. We use scans from the ScanNet dataset [5],
containing 1513 reconstructed RGB-D scans, and evaluate
with their train/val/test split of 1045/156/312 scenes, respec-
tively. To train and evaluate the complete part decomposition
for each object, we use the Scan2CAD [1] annotations of
CAD model alignments from ShapeNet [3] to the ScanNet
scans, coupled with the PartNet [33] annotations for the part
decomposition of the ShapeNet CAD models. We train and
evaluate on 6 object class categories representing the major-
ity of parts (45 part types in total that we train and evaluate
on) for these annotations. For a detailed specification of the
part types used, we refer to the appendix.

To evaluate our part decompositions of the objects in a
scan, we use a Chamfer Distance metric to capture struc-
tural consistency as well as an intersection over union (IoU)
metric to capture more local consistency. For IoU, we evalu-
ate 323 voxelizations of each predicted part in object space,
compared to the Scan2CAD ground truth part. For Cham-
fer Distance, we use the predicted voxel centers as points,
normalized to the unit box of the object. For both Chamfer
Distance and IoU, we compute the metrics for each part type
and average over all part types corresponding to an object
class category. The class average is computed by averaging
all resulting category numbers, and instance average com-
puted by averaging the metrics of all part instances regardless
of their object category. Note that to evaluate part segmenta-
tion without completion, we consider only predictions which
overlap with the original scan geometry.

Comparison to alternative approaches. In Table 1, we
compare to several state-of-the-art approaches for part seg-
mentation and scan completion, coupled together to pro-
vide a complete part decomposition of the objects in a scan.
As an alternative approach for this task, we consider scan
completion followed by object detection and part instance
segmentation. We employ the state-of-the-art scan comple-
tion approach SG-NN [6] to generate a prediction for the
complete geometry of a partial scan observation, and then
apply the object detections of with MLCVNet [57] (the same



Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

MLCVNet + PointNet++ 0.101 0.066 0.087 0.053 0.090 0.099 0.083 0.091 14.0 17.0 5.8 18.2 24.8 5.3 14.2 13.2
MLCVNet + UNet 0.052 0.082 0.062 0.034 0.093 0.068 0.065 0.060 24.1 13.4 9.3 31.8 14.3 14.6 17.9 18.9
MLCVNet + PointGroup 0.054 0.057 0.077 0.045 0.072 0.086 0.065 0.061 28.4 14.9 9.6 27.5 18.8 11.9 18.5 19.6
MLCVNet + StructureNet 0.039 0.084 0.062 0.034 0.075 0.083 0.063 0.056 32.6 2.1 9.4 23.1 16.1 15.4 16.5 15.4

Ours 0.037 0.071 0.060 0.031 0.069 0.058 0.054 0.048 36.9 15.3 11.1 29.3 27.4 21.5 23.6 27.8

Table 2: Evaluation of part segmentation on Scan2CAD [1]. We evaluate part segmentation of visible geometry only, in
comparison with state-of-the-art part segmentation [25, 32, 38].

Figure 4: Qualitative evaluation on semantic part completion in comparison with state of the art for part decomposition, includ-
ing scan completion followed by part segmentation. Our approach produces more consistent, accurate part decompositions.

as those from the original scan, to eliminate any effect of
possibly varying detections), obtain a final complete part

decomposition by the state-of-the-art instance segmentation
of PointGroup [25]. We also compare to StructureNet [32]



Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin avg chair table cab. bkshlf bed bin avg

MLCVNet + StructureNet 0.0032 0.0106 0.0074 0.0046 0.0194 0.0025 0.0079 29.5 21.9 22.4 24.1 23.5 32.4 25.6
RevealNet 0.0035 0.0070 0.0043 0.0020 0.0076 0.0078 0.0053 35.1 26.2 46.1 38.3 19.6 24.7 31.7
MLCVNet + UNet 0.0038 0.0103 0.0011 0.0050 0.0119 0.0028 0.0059 39.7 30.0 62.6 28.2 17.4 37.7 35.9

Ours 0.0038 0.0075 0.0022 0.0053 0.0061 0.0045 0.0049 38.6 30.7 57.4 33.6 37.6 37.8 39.3

Table 3: Instance completion on Scan2CAD [1]. We evaluate object completion as a union of predicted part decompositions,
and compare with state-of-the-art instance completion [21] and the union of StructureNet [32] parts as instances.

on MLCVNet detections, following their approach of using a
pretraining a decoder for complete part decompositions and
then learning an encoder to map this space. We additionally
consider a UNet [44] composed of 3D volumetric convolu-
tions as a baseline for the final part segmentation; this UNet
baseline helps to indicate the performance of a similar ap-
proach without the use of geometric priors or semantic part
relations before predicting the final part masks. We train
these alternative approaches on our part decomposition data
for ScanNet. These approaches do not consider explicit part
structure reasoning, whereas our prediction of semantic parts
and their relations helps to guide or prior-based decomposi-
tion for a more effective complete part decomposition.

In Figure 4, we show a qualitative comparison: without
part structure reasoning, the PointGroup approach can of-
ten mix up geometrically similar parts such as the left and
right chair arms, and the UNet baseline suffers in generating
complete part structures. StructureNet provides part struc-
ture reasoning, but their approach to train an encoder into
a pretrained decoder can tend to predict only the dominant
part decompositions for a class category (e.g., an office-type
chair instead of an armchair in the third row of Figure 4).
Our part structure guided priors enable more effective and
accurate part decompositions of the objects in the scenes.

Part segmentation on 3D scans. In addition to our task
of semantic part completion, we evaluate our approach in
comparison to state of the art on part segmentation in Ta-
ble 2. To evaluate part segmentation, we consider only the
part predictions that intersect with the original scan geom-
etry, and compare to PointGroup [25], StructureNet [32],
and a UNet baseline, using the object detection of by ML-
CVNet [57]. For part segmentation, we see that our part
structure reasoning coupled with geometric priors also pro-

duces more consistent part segmentations of the objects in
a scan, particularly in IoU as our approach results in more
locally consistent part structures.

Object completion on 3D scans. In Table 3, we addition-
ally evaluate our approach on object instance completion
by taking the union of our part mask predictions as a com-
plete object mask prediction. We compare to RevealNet [21],
which established this task, as well as a state-of-the-art object
detection using MLCVNet [57] followed by a UNet for com-
pletion or by StructureNet [32]. Our part reasoning enables
more effective instance completion by explicitly leveraging
shared structural knowledge of objects.

Ablations. In Table 4, we analyze the effect of our design
decisions for semantic part prediction and prior-guided part
mask prediction. We evaluate our approach without message-
passing in our semantic part prediction (w/o Part Msg Pass),
without using priors and directly decoding with convolutions
to a part mask prediction (w/o Priors), without refinement of
priors (No Prior Refine), and prior refinement with absolute
predictions instead of our relative offsets that are added to
the raw prior prediction (Prior Refine (Abs)). Our prior-
guided predictions, with refinement learned as a residual
offset, helps to produce more accurate results.

We additionally consider the effect of varying voxel res-
olutions in Table 5. All resolutions produce meaningful
results, although a (twice) higher resolution can result in
somewhat noisier results, and a (half) lower resolution tends
to lack detail; we thus use 323 objects.

Limitations. While our approach for semantic part com-
pletion shows promise towards a finer-grained, semantically
part-based understanding of 3D environments, we believe

Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

w/o Part Msg Pass 0.037 0.094 0.069 0.039 0.077 0.096 0.069 0.057 20.0 6.6 9.8 14.2 14.4 20.6 14.3 16.3
w/o Priors 0.036 0.093 0.067 0.044 0.058 0.101 0.067 0.056 21.8 7.3 11.0 13.8 16.4 21.9 15.4 17.7
No Prior Refine 0.034 0.093 0.069 0.034 0.057 0.096 0.064 0.055 22.5 7.6 12.2 17.9 16.6 22.0 16.4 18.2
Prior Refine (Abs) 0.036 0.089 0.065 0.034 0.067 0.105 0.066 0.055 21.4 7.5 11.5 17.4 16.5 20.7 15.8 17.6
Ours 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3

Table 4: Ablation study for our design decisions, evaluated for semantic part completion on Scan2CAD [1].



Figure 5: Qualitative results on real-world ScanNet [5] scenes using Scan2CAD [1] and PartNet [33] targets. Our approach
effectively predicts each object’s complete geometry as a decomposition into semantic parts.

Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

Res. 16 0.034 0.088 0.072 0.054 0.061 0.109 0.070 0.055 28.4 10.5 13.5 20.9 18.5 21.2 18.8 22.8
Res. 32 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3
Res. 64 0.045 0.098 0.058 0.044 0.067 0.100 0.069 0.060 18.8 5.6 9.9 10.5 14.7 19.3 13.1 15.4

Table 5: Evaluation of various object resolutions during training for semantic part completion on Scan2CAD [1].

there are many avenues for further development. For in-
stance, a dense volumetric representation of parts may suf-
fice for functionality analysis of furniture-type objects, but
can struggle to generate very high resolution parts for small
objects; we believe sparse [15, 4] or hierarchical [43, 52]
approaches would complement our prior-based approach.
Furthermore, objects are currently considered independently
for each part decomposition, where relational inference be-
tween objects in a scene would help to explain noisy or
unobserved part regions (e.g., multiple chairs or tables in a
scene are often repeated instances of the same geometry).

5. Conclusion
In this paper, we have presented a new approach for the

semantic part completion task of predicting a geometrically
complete part decomposition for each object in a 3D scan.
For each detected object in a scene, we exploit relational

part structure prediction to guide a geometric part prior pre-
diction, which is then refined to a final part decomposition,
where each part is represented by its semantic part type and
the geometry corresponding to the part, including any miss-
ing or unobserved regions in the scan. We show that our
structural and prior-guided reasoning about object parts no-
tably outperforms alternative approaches on this task. We
believe that our approach makes an important step towards
part-based understanding of 3D environments, and opens
up new possibilities for part-level functionality analysis, au-
tonomous agent interactions with an environment, and more.

6. Acknowledgements
We would like to thank the support of the Zentrum Digital-

isierung.Bayern (ZD.B) and the Russian Science Foundation
(Grant 19-41-04109). We additionally acknowledge the use
of Skoltech CDISE HPC cluster Zhores.



References
[1] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis

Savva, Angel X. Chang, and Matthias Nießner. Scan2cad:
Learning CAD model alignment in RGB-D scans. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
2614–2623, 2019. 5, 6, 7, 8, 12, 16

[2] Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Ma-
ciej Halber, Matthias Nießner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3d: Learning from
RGB-D data in indoor environments. In 2017 International
Conference on 3D Vision, 3DV 2017, Qingdao, China, Octo-
ber 10-12, 2017, pages 667–676, 2017. 1

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 1, 5

[4] Christopher B. Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neural
networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 3075–3084, 2019. 1, 8

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niessner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), July 2017. 1, 5, 8, 16

[6] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn:
Sparse generative neural networks for self-supervised scene
completion of rgb-d scans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 849–858, 2020. 2, 5, 12

[7] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view
prediction for 3d semantic scene segmentation. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
pages 452–468, 2018. 1

[8] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,
Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-
scale scene completion and semantic segmentation for 3d
scans. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2018. 2

[9] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and shape
synthesis. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5868–5877, 2017.
2

[10] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias Nießner. 3d-mpa: Multi-proposal aggre-
gation for 3d semantic instance segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9031–9040, 2020. 2

[11] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3d object arrangements. ACM Transactions on Graphics
(TOG), 31(6):1–11, 2012. 3

[12] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 2

[13] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, pages 9785–9795, 2019. 1

[14] Aleksey Golovinskiy and Thomas Funkhouser. Consis-
tent segmentation of 3d models. Computers & Graphics,
33(3):262–269, 2009. 2

[15] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018, pages 9224–9232, 2018. 1,
8

[16] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3d instance segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2940–2949, 2020. 1, 2
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In this supplemental material, we detail our network ar-
chitecture in Section A; in Section B, we provide details of
our baselines designs; in Section D, we provide specifica-
tions of parts that we used in our experiments; in Section E,
we additionally provide more quantitative results, visualize
examples of part priors combinations for each main category
and examples of our predictions compared to ground-truth.

A. Network Architecture Details
We detail our network architecture specification in Ta-

bles 8-9. Table 8 describes the layers for encoding the de-
tected objects to a feature code. The feature code is then
input to a decoder which predicts the semantic part structure,
as detailed in Table 10; here, the output of the last layer,
lin3, represents a tuple of children latent codes, which
predict part prior weights, as specified in Section 3.4 of the
main paper. The final part refinement is then described in
Table 9. Our volumetric object encoder and part refinement
are fully convolutional, while the semantic part structure
prediction operates on the latent feature representations of
shapes and parts with MLP structure.

B. Additional Baseline Training Details
In all our experiments in comparison with state of the

art, we leveraged a combination of various approaches. For
the task of Semantic Part Completion, we performed scan
completion with SG-NN [6] and object detection with ML-
CVNet [57]. Our UNet baseline is developed as a baseline
without any semantic part structure or geometric part prior
inference; it consists of only a 3D voxel encoder (four con-
volutional blocks consisting of 3D convolutions (with 16, 32,
64, 128 output channels) using Group Normalization and

mAP@25 (↑)
Method chair table cab. bkshlf bed bin avg

MLCVNet + StructureNet 45.7 25.7 19.8 50.0 36.4 53.0 38.4
RevealNet 70.3 40.6 90.5 87.2 22.7 20.6 55.3

Ours 78.4 47.2 90.5 77.8 22.7 72.4 64.8

Table 6: Evaluation of instance completion on
Scan2CAD [1]. We evaluate object completion as a
union of predicted part decompositions, in comparison with
state-of-the-art instance completion [21] and the union of
StructureNet [32] parts as instances.

ReLU activation) and 3D voxel decoder (five convolutional
blocks consisting of 3D transposed convolutions (with 128,
64, 32, 16, 1 output channel(s), equipped with “add” skip
connections) and a 3D convolution, using Group Normaliza-
tion and ReLU activation) with 45 output feature channels,
corresponding to binary masks for each possible part type,
and trained with a binary cross entropy loss. The UNet
bottleneck has a spatial resolution of 4 × 4 × 4. Without
the explicit part structure representations, this UNet base-
line tends to predict noisy part masks, or part types from
incorrect classes which remain functionally different.

Note that for experiments with StructureNet [32], we
used the same experimental setup as described in their origi-
nal paper, training different models for each class category.
Since StructureNet operates in the canonical space of the
objects, we provided our predicted object orientations from
our approach to guide the StructureNet predictions.

C. Comparison to Sung et al. 2015
We compare with the approach of Sung et al. [51] on their

benchmark for shape completion of chairs and tables. [51]
follows a leave-one-out approach by training on all but one
left-out shape; our approach is trained on PartNet objects
that do not intersect with any of the evaluation instances. Our
approach outperforms [51], with Chamfer Distance of 0.77
and 0.76 in comparison with 0.86 and 0.85 of [51] on chairs
and tables, respectively. We show additional qualitative
comparisons in Figure 9.

D. Part Types
In Figure 6, we visualize all part types which we trained

on. Note that the classes ’cabinet’ and ’bookshelf’ share the
same set of parts, so we use the same part types and priors.

E. Additional Results
Additional Quantitative Results In Table 6 we addition-
ally evaluate object instance completion using an mAP@25
metric, in comparison to state-of-the-art RevealNet [21] and
a combination of MLCVNet [57] with StructureNet [32].
Additionally, in Table 7, we evaluate our approach with
ground truth 3D detection, i.e., ground truth oriented 3D
bounding boxes for each object in the scene. Under ground
truth detection, our structural part priors enable more robust
part decomposition than StructureNet [32].

Chamfer Distance (↓) IoU (↑)
Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

StructureNet [32] 0.019 0.089 0.048 0.032 0.069 0.105 0.061 0.049 18.5 1.0 10.1 16.8 6.8 12.1 10.9 12.8
Ours 0.029 0.089 0.055 0.037 0.058 0.081 0.058 0.048 27.6 8.0 17.3 20.9 19.8 28.7 20.4 22.6

Table 7: Evaluation on semantic part completion on Scan2CAD [1] with ground truth 3D object detection (oriented 3D
bounding boxes) as input.



Encoder Input Layer Type Input Size Output Size Kernel Size Stride Padding

conv0 scan occ. grid Conv3D (1, 32, 32, 32) (16, 16, 16, 16) (5, 5, 5) (2, 2, 2) (2, 2, 2)
gnorm0 conv0 GroupNorm (16, 16, 16, 16) (16, 16, 16, 16) - - -

relu0 gnorm0 ReLU (16, 16, 16, 16) (16, 16, 16, 16) - - -
pool1 relu0 MaxPooling (16, 16, 16, 16) (16, 8, 8, 8) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv1 pool1 Conv3D (16, 8, 8, 8) (32, 8, 8, 8) (3, 3, 3) (1, 1, 1) (1, 1, 1)

gnorm1 conv1 GroupNorm (32, 8, 8, 8) (32, 8, 8, 8) - - -
relu1 gnorm1 ReLU (32, 8, 8, 8) (32, 8, 8, 8) - - -
pool2 relu1 MaxPooling (32, 8, 8, 8) (32, 4, 4, 4) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv2 pool2 Conv3D (32, 4, 4, 4) (64, 2, 2, 2) (5, 5, 5) (2, 2, 2) (2, 2, 2)

gnorm2 conv2 GroupNorm (64, 2, 2, 2) (64, 2, 2, 2) - - -
relu2 gnorm2 ReLU (64, 2, 2, 2) (64, 2, 2, 2) - - -
pool3 relu2 MaxPooling (64, 2, 2, 2) (64, 1, 1, 1) (2, 2, 2) (2, 2, 2) (0, 0, 0)
conv3 pool3 Conv3D (64, 1, 1, 1) (128, 1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0)

gnorm3 conv3 GroupNorm (128, 1, 1, 1) (128, 1, 1, 1) - - -
relu3 gnorm3 ReLU (128, 1, 1, 1) (128, 1, 1, 1) - - -
flat0 node feature Flatten (128, 1, 1, 1) (128) - - -

Table 8: Layer specification for detected object encoder.
Child decoder Input Layer Type Input Size Output Size

lin0 node feature Linear 128 1280
relu0 lin0 ReLU 1280 1280

reshape0 relu0 Reshape 1280 (10, 128)
node exist reshape0 Linear (10, 128) (10, 1)

concat0 (reshape0, reshape0) Concat. (10, 128), (10, 128) (10, 10, 256)
lin1 concat0 Linear (10, 10, 256) (10, 10, 128)
relu1 lin1 ReLU (10, 10, 128) (10, 10, 128)

edge exist relu1 Linear (10, 10, 128) (10, 10, 1)

mp (relu1, edge exist, reshape0) Mes. Passing (10, 10, 128), (10, 10, 1), (10, 128) (10, 384)
lin2 mp Linear (10, 384) (10, 128)
relu2 lin2 ReLU (10, 128) (10, 128)

node sem relu2 Linear (10, 128) (10, #classes)

lin3 relu2 Linear (10, 128) (10, 128)
relu3 lin3 ReLU (10, 128) (10, 128)

Table 9: Layer specification for decoding an object into its semantic part structure.
Prior refiner Input Layer Type Input Size Output Size Kernel Size Stride Padding

concat0 (prior, scan occ. grid) Concat. (1, 32, 32, 32), (1, 32, 32, 32) (2, 32, 32, 32) - - -
conv0 concat0 Conv3D (2, 32, 32, 32) (8, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm0 conv0 BatchNorm (8, 32, 32, 32) (8, 32, 32, 32) - - -
relu0 bnorm0 ReLU (8, 32, 32, 32) (8, 32, 32, 32) - - -
conv1 relu0 Conv3D (8, 32, 32, 32) (16, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm1 conv1 BatchNorm (16, 32, 32, 32) (16, 32, 32, 32) - - -
relu1 bnorm1 ReLU (16, 32, 32, 32) (16, 32, 32, 32) - - -
conv2 relu1 Conv3D (16, 32, 32, 32) (8, 32, 32, 32) (3, 3, 3) (1, 1, 1) (1, 1, 1)

bnorm2 conv2 BatchNorm (8, 32, 32, 32) (8, 32, 32, 32) - - -
relu2 bnorm2 ReLU (8, 32, 32, 32) (8, 32, 32, 32) - - -
conv3 relu2 Conv3D (8, 32, 32, 32) (1, 32, 32, 32) (1, 1, 1) (1, 1, 1) (0, 0, 0)
add3 (prior, conv3) Add (1, 32, 32, 32), (1, 32, 32, 32) (1, 32, 32, 32) - - -

sigmoid3 add3 Sigmoid (1, 32, 32, 32) (1, 32, 32, 32) - - -

Table 10: Layer specification for final part mask refinement.

Additional Part Prior Visualizations We show addi-
tional examples of computed part priors for each object class
category in Figure 7. All priors are visualized with three
level-sets.

Additional Qualitative Semantic Part Completion Re-
sults Figure 8 shows additional examples of our predic-
tions compared with ground-truth. Our method predicts

meaningful part completion across a variety of object cate-
gories.



Figure 6: Part specification for the parts used in our approach. Note that ‘cabinet’ and ‘bookshelf’ classes have the same set of
parts.



Figure 7: Visualization of various part priors.



Figure 8: Additional qualitative results for our method on ScanNet [5] scenes and ground truth from Scan2CAD [1] and
PartNet [33].



Figure 9: Qualitative comparison with Sung et al. [51] on
their benchmark for shape completion. The larger missing
regions (chair legs, table leg) are challenging, and [51] strug-
gles to fit the correct structures, whereas our strong priors
on semantic part structure and geometric part priors provide
a coherent shape prediction.


